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Habitat fragmentation can have negative impacts on migratory organisms
that rely on the functional connectivity between growing and breeding
grounds. Quantifying the population-level phenotypic consequences of
such fragmentation requires fine-scaled tracking of individual behaviour
and movements across relevant scales. Here we make use of a natural exper-
iment where some populations of ‘migrant’ three-spined sticklebacks
(Gasterosteus aculeatus) became ‘residents’, following habitat fragmentation
five decades ago. To test whether residents have a lower movement ten-
dency than migrants, we developed a novel experimental platform that
allows the automated tracking of individual movements via RFID technol-
ogy in a semi-natural mesocosm where spatio-temporal scales and
environmental conditions can be manipulated. We found that residents
moved significantly less than migrants at large but not at small spatial
scale. This pattern was consistent across time and contexts (water flow
and group size). Our study substantiates prior literature on rapid phenotypic
divergence in sticklebacks in response to human-induced isolation and high-
lights the importance of observing behaviour in ecologically relevant set-ups
that bridge the gap between laboratory and field studies.
1. Introduction
Habitat fragmentation is a major threat for many animals, particularly for
migratory species that depend on multiple habitats to complete their life
cycle [1]. Water management efforts worldwide have disrupted the connectivity
between marine and freshwater habitats, confining some fish populations to
only freshwater habitats without the possibility of migrating to the sea. Such
forced isolation can cause rapid phenotypic responses and life-history changes
(mammals and birds: [2]; fish: [3–6]). Species’ responses to reduced connec-
tivity, forced isolation, decreased densities and smaller population sizes will
inform us whether and how animal populations can cope with these human-
induced changes. In this context, behavioural responses are crucial in determin-
ing success in persisting in fast-changing environments, especially in the initial
stages [7]. However, studying such responses typically requires quantification
of behaviour and movement at the individual level, which is often challenging
in small-bodied species and especially so in the aquatic environment. For
example, in the wild, individual tracking of small organisms’ movements is
often either impossible or gives rise to uncertainty in the observations, as a
large proportion of data is often missed (mark–recapture experiments in the
wild often have low recapture rates or biased recapture due to animal
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Figure 1. Experimental set-up. Each mesocosm consisted of five linearly connected above-ground ponds (1–5) equipped with circular RFID antennas that auto-
matically detect crosses of PIT-tagged individuals. Fish were released into pond 1. This pond was equipped with nine RFID antennas (five on the bottom and four on
top of the water column), allowing us to quantify within-pond movements. The connections between adjacent ponds were equipped with two RFID antennas,
allowing us to quantify the number and direction of movements between ponds.
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behaviour or weather conditions [8,9]). While laboratory
studies can be highly controlled and allow for experimental
manipulation, they regularly suffer from spatio-temporal
limitations and most importantly lack ecological relevance
due to limited environmental complexity compared to
natural environments [10–13].

Using individual laboratory-based assays, we have
previously shown that, in the Netherlands, ‘resident’ popu-
lations of three-spined sticklebacks (Gasterosteus aculeatus),
isolated in freshwater ditches due to man-made barriers for
approximately 50 years, diverged in behaviour (and mor-
phology) from their ‘migrant’ ancestors [14]. Yet, contrary
to our expectations (and other findings for example on
higher swimming performance and endurance of migrants
in comparison to residents [15,16]), migrants did not exhibit
higher movement tendencies than residents. Moreover, resi-
dents were more active and exploratory than migrants [14].
We speculated that the counterintuitive nature of the results
could be due to a freezing or stress response of migrants in
the absence of a social group [14,17]. Further, the small-
scale experimental settings in the laboratory may not be
suited to study larger scale movement, which we explicitly
aim to test here.

In recent decades, the use of passive integrated transpon-
ders (PIT tags) has become very prominent in the studies of
movement patterns in wild populations [18], including small
organisms such as passerine birds [19,20], insects [21] and
fish [22]. With this technology, individual behaviour and
social associations can be measured using remote detections
at fixed locations. In this study, we describe a novel experimen-
tal mesocosm set-up that uses PIT tags and a radio-frequency
identification (RFID) system to quantify individual behaviour
and movement of small fish in semi-natural conditions, thus
providing relevant environmental complexity and temporal
scales while allowing the investigation of movement across
different spatial scales. The mesocosm consists of several con-
nected semi-natural ponds equipped with RFID antennas to
monitor individual movement tendencies. Here we particularly
address if (i) spatial scale matters for uncovering population
divergence in movement tendencies and (ii) movement ten-
dencies of migrant and resident fish are consistent across
ecological conditions such as water flow and group size.
2. Methods
(a) Mesocosm system
The experiments were conducted in two independent meso-
cosms of five above-ground ponds (each Ø 1.6 m, with a water
depth of 80 cm), connected linearly with opaque corridors
(each of length approx. 1.5 m and Ø 11 cm), spanning a linear
distance of approximately 14 m (figure 1). The system is supplied
with freshwater from a natural ditch with the possibility of creat-
ing water flow (approx. 0.7 cm s−1) that mimics conditions in
Dutch canals and represents a directional migration cue together
with seasonal changes of temperature and photoperiod [23]. This
system enabled measurement of the movements of individual
sticklebacks within- and between-ponds. The first pond (labelled
1 in figure 1), enriched with plastic plants, was used to quantify
within-pond movement, while the whole system of five con-
nected ponds was used to record between-pond movement
tendencies (see electronic supplementary material, S1 for details).

Our tracking system consisted of circular RFID antennas (Ø
10 cm), data loggers and PIT tags (Trovan, Ltd, Santa Barbara,
California) to record movements of PIT-tagged sticklebacks
(details in electronic supplementary material, S2). Nine circular
antennas were placed in the first pond to record within-pond
movements, and two antennas were placed at both ends of
each of the four connecting corridors to measure between-pond
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Figure 2. Within-pond and between-pond movement of resident and migrant sticklebacks. (a,b) Within-pond movement between bottom and top antennas,
respectively (Experiment 1); (c) between-pond movement in Experiment 1; (d ) between-pond crosses in relation to the daily flow treatment in Experiment 2.
In all graphs, boxplots with median are shown for migrant (dark blue) and resident (light blue) sticklebacks. For (a–c), we have also represented the medians
of each test group as shaded dots (migrant = five groups, resident = six groups).
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movement (figure 1). Each antenna records the unique PIT tag ID
of the fish along with a time stamp, stored on a USB drive in the
central data logger. The sensitivity of the system was set to three
reads per second per unique tag. In a pilot study, we validated
the reads using video recordings and found that no detections
were missed and that reads corresponded well with the entry
and exit times of fish.
(b) Experiment 1: movement across spatial scales in the
mesocosm

We created five groups of migrants and six groups of residents,
each consisting of 10 randomly selected individuals (total:
Nmig = 49 and Nres = 60). While we always tried to maintain
the group size to 10 fish by making up the group to 10 with
untagged individuals, tag loss and other technical difficulties
(such as retagging and waiting for recovery) led to one group
of migrants having nine fish and another with 11 fish, in order
to test all the tagged fish. Groups were housed in separate
small holding ponds for 24 h before the start of the experiment.
On the experimental day, one resident and one migrant group
were released simultaneously (to avoid temperature or temporal
biases) into separate mesocosms. The individuals in each group
were first monitored for within-pond movement by confining
the fish to the starting pond for the first 5 h (figure 1) and then
for between-pond movement for approximately 16.5 h, after
opening the connection to the other ponds (figure 1; electronic
supplementary material, S1 and S2).
(c) Experiment 2: effect of group size and water flow
on movement

In a next step (after about one month), we combined all migrants
and, separately, all residents (after excluding 12 fish that had
either died or lost tags) into two large groups, which reflect natu-
ral conditions more closely, as stickleback prefer larger over
smaller groups [24] (Nmig = 45, Nres = 52; one group of migrants
and one group of residents) and quantified between-pond move-
ments in these two groups in the two mesocosm set-ups over 4
days. In addition, we alternated flow and no-flow conditions
on consecutive days (see electronic supplementary material, S1).
(d) Analyses
We first cleaned the data from small read errors which could be
easily corrected given the high sensitivity of the RFID system (3–
5 reads/second). Then, for each individual, we quantified
within-pond movement as the number of times each fish
moved between different bottom antennas or different surface
antennas, respectively (figure 1). We deemed the number of con-
secutive visits to a particular antenna unreliable for measuring
movement patterns because of the possibility that a prolonged
visit to a given antenna might be recorded as multiple discon-
nected set of reads, appearing as if the fish visited the antenna
multiple times. Between-pond movement was quantified as the
number of crosses a fish made through the corridors connecting
two ponds (figure 1). Fish that were not detected by any antenna
were given a score of zero crosses.
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We then analysed if residents and migrants differed in the
number of crosses for within- and between-pond movements
and whether they were consistent across contexts (group size
and flow). Briefly, we considered the number of crosses within-
and between-ponds as response variables separately in univari-
ate generalized linear mixed models with Poisson errors. In all
models, we included origin (resident versus migrant) as a fixed
factor and group-ID (to account for pseudo replication) and an
observation level ‘Obs’ (to control for overdispersion, [25]) as
random effects. Additionally, we analysed whether the fraction
of fish that did not exit the first pond differed between migrants
and residents in Experiment 1, using Fisher’s exact test. Repeat-
ability and correlation of number of crosses across contexts
were also calculated (electronic supplementary material, S3).
For Experiment 2 (effect of group size and water flow on move-
ment), our effective sample size was one per origin, hence we
refrained from conducting statistical analysis and interpreted
results from the plot. We estimated individual consistency of
between-pond movements using repeatability and correlation
coefficients, which are provided in the electronic supplementary
materials (electronic supplementary material, S3). All analyses
were carried out in R v. 4.1.0, [26]. Complete description of the
analyses and code are given in the electronic supplementary
materials.
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3. Results
(a) Movement across spatial scales in the mesocosm
Within the first pond, residents and migrants showed a broad
distribution of number of crosses at both bottom and top
antennas (figure 2a,b) and the number of crosses were not
different between the two groups in both cases (table 1;
median bottom-antenna crosses: residents = 23, migrants =
14; median top-antenna crosses: residents = 3.5, migrants =
8). By contrast, the number of movements between ponds
was smaller in residents than in migrants (figure 2c; effect
of Origin in table 1; median pond crosses: residents = 0,
migrants = 16). Furthermore, the proportion of ‘non-leavers’,
i.e. individuals that did not exit the first pond, was higher
in residents than in migrants (55% in residents versus 28.6%
in migrants, odds ratio = 3.02, p = 0.007).

(b) Effect of group size and water flow on movement
In large social groups, residents again moved consistently
less between ponds than migrants (median pond crosses
over the 4 experimental days range between 1 and 6 for resi-
dents and between 20 and 38 for migrants, figure 2d ).
Therefore, we conclude that differences between residents
and migrants were maintained regardless of changing
group size or differing ecological (flow) conditions.
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4. Discussion
Previous studies in sticklebacks that have quantified popu-
lation movement tendencies under laboratory conditions
showed mixed or counterintuitive patterns: residents
showed either higher [14] or inconsistent patterns [27] in
activity/exploration levels compared to migrants. In this
study, we show that migrants and residents differ in their
movement tendency only on a larger spatial scale (between-
ponds), while no differences could be detected on a smaller
scale (within-ponds). It is thus conceivable that previous
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inconsistencies stem from the fact that the experimental set-
ups did not offer biologically relevant testing conditions.
The use of semi-natural mesocosms, as described here, may
thus be a more appropriate way to characterize individual
and population movement related to migration.

It is biologically plausible that movement tendencies are
scale dependent. Movement measured at very different
spatial scales (from 30 cm in the laboratory to 1.5 m within-
ponds to 14 m across ponds) may reflect functionally differ-
ent behaviours. For example, individual measurements on
smaller scales, in the laboratory, may be an indication of a
stress response to social isolation [17]. By contrast, in the
wild, sticklebacks exhibit considerable foraging movements
over days (median of 40 m upstream, [28]) and, hence their
within-pond movements, representing foraging movements,
may not differ between populations. However, wild migrants
in our field system travel tens of kilometres inland within a
few days (pers. comm. from water authorities) and thus
require sufficient space to express their natural behaviour.

Tests in the laboratory, though invaluable for studies on
animal behaviour owing to controlled settings, are not with-
out drawbacks. Laboratory tests are usually performed in
highly controlled and novel environments. This can lead to
homogenization of behavioural expression (e.g. decreased
variance over time [29]) or uncovering ‘cryptic’ behavioural
variation (with novel behaviours and increased variance in
behavioural expression [30]). We thus advocate using meso-
cosms or other semi-natural set-ups (e.g. [21,31–37]), to
bridge laboratory and field studies. They circumvent the
mentioned drawbacks and may provide valuable insights
undetectable in classical behavioural set-ups, especially for
wild populations. In addition, the modular nature of the
described mesocosm offers flexibility in the spatial organiz-
ation of the individual ponds and antennas. This allows for
classical tests, such as choice tests, to be conducted in a
more sophisticated manner. We are confident that such sys-
tems, enabling remote tracking and yielding high-resolution
data over longer periods of time will become common in
behavioural studies.

Our results show that freshwater-induced phenotypic
changes in sticklebacks can occur on contemporary timescales
(see also [15,38,39]) and a follow-up study showed that some
of these have a genetic component [40]. The direction of
these phenotypic changes is similar to the behavioural and
morphological adaptions reported in stickleback populations
that have colonized freshwater habitats after the last glacial
retreat [41–45]. Residents in our study populations are thus
likely on a trajectory to lose their migration tendencies and
already (partially) adapted to complete residency.

Ethics. Wild animals were sampled using a fishing permit from Rijks-
dienst voor Ondernemend Nederland (the Netherlands) and an angling
permit from the Hengelsportfederatie Groningen-Drenthe. Housing
and testing of behaviours were in adherence to the project permit
from the Central Committee on Animal Experiments (CCD, the Nether-
lands) under the licence number AVD1050020174084.
Data accessibility. Datasets and code for processing and analysing data
are available from the Dryad Digital Repository: https://doi.org/
10.5061/dryad.xwdbrv1hx [46].

Supplementary material is available online [47].
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