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ThesisAbstract

M
OVEMENT is a fundamental phenomenon in the natural world, and active

movement in response to environmental drivers is key to animal ecology.

Individuals’ positions in a landscape determine what they perceive, and with

which other animals they associate and how. These ecological interactions feed

back into decisions on where to go next. Such fine-scale, individual-level deci-

sions, made by each individual in a population or species, whether alone or in

concert with others, scale up over time and space to affect large-scale ecological

phenomena such as species distributions and interactions. Over the past twenty

years, the field ofmovement ecology, driven by rapid advances in animal tracking

technology, has revealed fascinating connections between animalmovement and

ecological drivers that were previously impossible to measure.

Now,movementecology is advancingonnewfrontiers. This thesis is anepisodic,

personal account of developments on two of these frontiers, with which I have

been involved: (i) the study of animal movements using massive datasets, and (ii)

theexplorationof theevolutionary causes andconsequencesof animalmovement,

using computer simulationmodels. These advances have beenmade possible by

methodological innovations— such as new technologies for animal tracking, or

by adopting new approaches — such as evolutionary individual-based simula-

tions, and reflections on these methods are woven into this work. Organising this

thesis into two parts, one for each of the themes above, I have tried to gain and

present new insight, but also to lay the groundwork for future developments.

CHAPTER 1 provides a broad introduction to these two themes. I set out my

view for how we could better understand the ecology and evolution of animal

movement and spatial distributions by using mechanistic, individual-based sim-

ulation models. In brief, I cover why animals’ foraging dynamics, rather than

rare or sporadic events such as natal dispersal or annual migration, are especially

suited to understanding the evolutionary causes and consequences of movement

as an adaptive behaviour.

In PARTI, I look at our advances in studying the fine-scalemovement decisions

of animals using big data collected with new high-throughput animal tracking

systems. A useful primer to high-throughput tracking, with which I was involved,

but which is not presented in this thesis, is a recent review in Science, “Big-Data

1



Approaches Lead to an Increased Understanding of the Ecology of Animal Move-

ment”1.

CHAPTER 2 lays out some practical aspects of dealing with the massive spatial

datasets that are generated by high-throughput animal tracking systems, which

can track themovement of hundreds of individuals at a very high spatio-temporal

resolution (a few metres’ accuracy, and a few seconds’ interval). I cover data

cleaning, aggregation, and first principles-based segmentation-clustering, as well

as how to implement thesemethods in reproducible and efficient ways. Adopting

computational best-practices from software development and other big-data

fields such as genomics is the way forward for robust methods development and

reproducible data-processing in movement ecology.

In INTERLUDE A, I include some thoughts on both the technical and aesthetic

aspects of visualising animal movements, and show how I applied them while

making a map that won the British Ecological Society Movement Ecology Special

Interest Group’sMapping AnimalMovements competition in 2021.

CHAPTER 3 combines high-throughput animal movement data with high-

resolution data on the fine-scale, three-dimensional spatial structure of the biotic

and abiotic environment. Specifically, I take a mechanistic look at the proximate

drivers of the movement and habitat selection of moulting birds. I show how

simple mechanistic aspects of a landscape— the visibility of one location from

another, interacts with the physical determinants of movement — the surface

area of birds’ wings, to shape how individuals use their environment. A viewshed

analysis approach that computes fearscapes—areas of high visibility — reveals

that animal movements are a joint outcome of individuals’ current physiolog-

ical state (i.e., the condition of their wings), and individuals’ likely perception

of landscape risk, in terms of whether they could potentially be seen by other

individuals.

In PART II, I look at howwe can tackle questions about the evolutionary causes

and consequences of animal movement strategies, using mechanistic individual-

basedmodels of movement decisions. These models, I suggest, are key to under-

standing the evolutionary ecology of movement, because they can incorporate

both essential ecological detail as well as allowing evolutionary dynamics that

are impossible to measure in natural systems.

In INTERLUDE B, I demonstrate how to implement conceptual models that

link the ecology and evolution of animals’ fine-scale movement strategies. Using

1 Nathan, R. et al. (2022), “Big-Data Approaches Lead to an Increased Understanding of the Ecology
of Animal Movement,” Science, 375/6582: eabg1780.
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a prototypemodel that draws on principles laid out in the Introduction, I show

a simple prototype of the mechanistic models used in this part of the thesis. I

show how such models could lead to qualitatively and quantitatively different

outcomes from those that would be obtained by structuring models according

to classical assumptions— such as random or optimal movement— from evolu-

tionary ecology.

CHAPTER 4 presents a mechanistic, individual-based model of the joint evolu-

tion of animal movement and foraging competition strategies. This is the first

fully fleshed out study using the class of models I advocate in the Introduction.

In this model, individuals’ movement and foraging decisions depend on local

environmental cues, and simultaneously, individual foraging decisions leads to a

restructuring of the cues available in the environment. I show howmovement

strategies evolve to match individuals’ competitive context as well as the avail-

ability of information on the resource landscape. Substantial individual variation

is evolved in movement strategies among foragers, and furthermore, I find tight

correlations between evolved movement and foraging strategies under some con-

ditions. Modelling animal movement decisions in an eco-evolutionary context

can help define the envelope of potential outcomes under different ecological sce-

narios in which there are complex feedback loops between individual movement

and environmental cues.

In INTERLUDE C, I include a brief comment about the importance of attention

to detail when building individual-based simulation models. That this comment

had to bewritten in response to publishedwork shows how it can actually be quite

challenging to interpret and implement even a classic theoreticalmodel (the Ideal

Free Distribution; ‘IFD’) in terms of computational methods — specifically, as

an individual-based simulation model. Such implementations therefore require

both skill and care while coding, as well as a firm understanding of the biological

processes (perception andmovement) underlying phenomena such as the IFD.

CHAPTER 5 looks at the evolution of animal movement strategies following

the introduction of an infectious, chronic pathogen, and examines how animals

balance the benefits of social information on resource distributions, against the

risks of pathogen transmission, and the consequences of this evolutionary change

for animal sociality. I show that introducing a pathogen to a population that has

evolved to use social information leads to very rapid changes inmovement strate-

gies; this leads to cascading outcomes includingmoremovement overall, fewer

individual associations, lower intake, but also reduced pathogen transmission

compared to non-adapted ancestral populations. Mechanistically modelling the

introduction and spread of a novel infectious pathogen, a scenario of increas-

ing global concern, can help to predict the direct and indirect consequences for

3



individual-level outcomes, as well as impacts on the spatial-social organisation

of animal societies.

CHAPTER 6 uses simulated movement data from individuals in Chapter 4

to validate popular methods in the study of empirical animal movement data:

repeatability analysis, and step-selection functions. I show that individual differ-

ences in movement strategies do not always result in differences in movement

paths, and consequently, statistical tools including repeatability analysis and

step-selection analysis, may not be able to detect often substantial underlying

variation in animals’ movement strategies. Applying statistical methods com-

mon inmovement ecology to simulatedmovement data where the mechanisms

controlling movement are known, can help reveal ecological and evolutionary

scenarios which may confound these methods, enabling more precise inferences

from tracking data.

Finally, in CHAPTER7, I reflect on thefindings in this thesis, and suggest howan

energetics approach could be used to estimate some of the fitness consequences

of animal movement.

-.-
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Chapter1
Introduction: Linking the

EcologyandEvolutionof

AnimalMovement

PratikR. Gupte

AnimalMovement as a Key Process in Ecology

M
OVEMENT is key to animal ecology across spatial and temporal scales, as

nearly all ecological processes have an explicit spatial context (Nathan

et al. 2008). By moving, animals can track seasonal fluctuations in resources,

as migrating blue whales (Balenopteramusculus) — amongmany other species

— do, when tracking oceanic ‘green-up’ in the form of plankton growth and pro-

liferation (Abrahms et al. 2019; 2021a). Animal movement can also facilitate

or avoid ecological interactions; among these are both inter- and intra-specific

competition. For instance, at very small spatial and temporal scales (on the order

ofminutes), competitive interactions including both scramble (‘exploitation’) and

agonistic (‘interference’) competition (Birch 1957; Keddy 2001) are entirely deter-

mined by the relative positions of competing individuals and the resource to be

gained (see also Chapter 4). At larger scales, such interactions can determine how

species’ distributions track environmental changes; in a classic example, compe-

tition for nesting spaces amongWestern bluebirds (Sialiamexicana) has led to a

rapid expansion of their range across the north-western United States, leading

to the displacement of their less aggressive congener, the mountain bluebird (S.

currucoides; Duckworth and Badyaev 2007).
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6 CHAPTER 1

The importance of spatial limitations is also evident in other interactions, such

as predation, as prey (in this case, North American elk, Cervus elaphus) attempt

to minimise their likely overlap with predators (wolves, Canis lupus; Fortin et al.

2005; but see more recently Kohl et al. 2018); similarly, when facing parasitism,

hosts attempt to avoid exposure to pathogens and parasites to prevent infection

(Weinstein et al. 2018). Movement plays a key role in aspects of reproduction as

well, such as in the sampling and selection of Arctic breeding sites in pectoral

sandpipers (Calidris melanotos; Kempenaers and Valcu 2017). Finally, spatial

proximity is also key to a number of transmission phenomena, including the

spread of animal culture such as foraging techniques (e.g. opening garbage bins,

among sulphur-crested cockatoos, Cacatua galerita; Klump et al. 2021) andmi-

gration routes (various ungulates across the United States; Jesmer et al. 2018), as

well as the transfer of infectious pathogens (Stroeymeyt et al. 2018; Weinstein

et al. 2018; Monk et al. 2022: see also Chapter 5).

Mobile animals do not only respond to their environments, but activelymodify

them as well. For example, small andmedium-sized savanna herbivores (ungu-

lates < 1,000 kg) in southern Africa, avoid closed and busy vegetation in order

to lessen predation risk. In so doing, they transfer substantial nutrients to these

areas through dung, altering the spatial distribution of suitable plant habitats,

and thereby the future distributions of vegetated and open areas (Le Roux et al.

2018). Themovement and behaviour of large herbivores can even facilitate the

local, short-term growth of plants. In the United States (where many of these

studies are performed), grazing by bison (Bison bison) seemingly induces local

‘green-up’ (the growth of plants) as plants respond to grazing damage (Geremia

et al. 2019). This new growth is especially nutrient-rich, providing higher quality

forage to bison and other animals than would be available without the presence

of a bison herd.

The distributions of such ‘ecosystem engineer’ species can affect that of others

in the same area; in the classic example, wolves cause an ecological cascade by

reducing grazing by their prey, elk (Fortin et al. 2005). Conversely, changes in prey

movements and distribution can alter the movement and behaviour of both their

predators, and even that of scavengers (in Argentina; with Andean condor, Vultur

gryphus scavenging on puma, Puma concolor kills of the vicuña, Vicugna vicugna;

Monk et al. 2022). Often, species characteristics can determine how individuals

structure their environment: in the example with southern African ungulates

(Le Roux et al. 2018), megaherbivores that are relatively invulnerable to natural

predators move across the landscape with no specific preference for open areas

(where smaller herbivores are safer from ambush hunters). Consequently, they

transfer nutrients more evenly against the small- andmedium-sized herbivore
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nutrient transfer gradient (i.e., from open to more closed areas), thus modulating

landscape vegetation structure.

Given the importance of animalmovement to natural processes, it is important

tonote that animalmovements as awhole are severely affectedbyhuman-induced

global changes (Tucker et al. 2018). For example, the driver of changes in vicuña

movements (and substantial mortality) discussed earlier (Monk et al. 2022) was

the spread of Sarcoptic mange (Sarcoptes scabiei), which likely resulted from the

artificial introduction into the region of a related species, llamas (Lama glama),

which themselves were infected with mange. In addition to negative effects for

animals themselves, perturbed natural regimes of animal movements (e.g. due

to climate or land-use change), can severely impact humans too. One important

example is the annual damage and injury resulting from direct human-animal

conflict, especially in regions where megafauna persist or are recovering, but

where theyalsohave insufficient roomtoundertakenaturalmovements (Abrahms

et al. 2021b). Where mobile wildlife tends to interact, or even just overlap with

humans, or with domesticated animals, there is a strong potential for the spillover

and potential spread of zoonoses to humans, and epizootic diseases to animals

such as poultry or livestock (Keeling et al. 2001; Carlson et al. 2022a; Wille and

Barr 2022). Indeed, the past two and a half years (late 2019 – mid 2022) have

been dominated by the Covid-19 pandemic, which should serve as a reminder

of the perils of disregarding the potential of the natural world to intrude upon

human societies which once thought themselves immune to ecological pressures.

The current and ongoing introduction of the little known tropical African dis-

ease monkeypox (primarily a rodent pathogen) to communities across the world,

and the two-year long but relatively ignored outbreak of the H5N1 strain of avian

influenza in bird populations worldwide (Wille and Barr 2022), should also serve

as a clear example of the risks of shifting species range distributions due to climate

change (Carlson et al. 2022b). Conversely, natural distributions of wildlife could

aid climate mitigation by regulating key biotic and abiotic processes, such as

the flow of soil carbon and nutrients (see Schmitz et al. 2018; Malhi et al. 2022;

and recall Le Roux et al. 2018). While the studies presented here have exam-

ined relatively few individuals (compared to global populations, that is) and with

relatively restricted geographical scope, it is individual-level movements and

behaviours that scale up to influence species- and ecosystem-level phenomena.

The rules governing animal movement are thus crucial to a sound understanding

of ecological processes and patterns generally (Jeltsch et al. 2013; Schlägel et al.

2020; Costa-Pereira et al. 2022).
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Movement in Eco-evolutionary Theory

Movement has long been recognised as an important process, but is often only

implicitly included in the cornerstonemodels of eco-evolutionary theory. In these

models, evolution is often not incorporated at all, but replaced by the assump-

tion that individuals tend to make choices that maximize their fitness. An early

example is the foundational foraging model of Fretwell and Lucas (1970) that

predicts the distribution of fitness-maximising agents over patchily distributed

resources (‘ideal free distribution’ or IFD). Here, individuals that are ‘ideal’ (hav-

ing full knowledge of the distribution of resources and competitors) and ‘free’

(unconstrained in their movement) scan the whole landscape and immediately

move to the locationmaximizing their resource intake. The idea underlying the

assumption that individuals tend to move to fitness-maximising locations is that

natural selection will have ‘weeded out’ all strategies that are not maximising

fitness. Yet, there are serious problems with the assumption that well-adapted

individuals are maximising fitness at all times.

First, ‘fitness’ is an intricate concept (Brommer 2000), and it is unlikely that

individuals can judge the full fitness implications of their movement decisions.

Instead, they are likely to be guided by other principles, such as the avoidance

of predators or the amount of food available. Second, individuals will typically

not be able to single out the best possible habitat patch, as they will only have

knowledge on recently visited patches or the patches in their vicinity (Robira et al.

2021). More global knowledge may be obtainable, but obtaining this information

will come at a (fitness) cost. Third, even if individuals are ‘ideal’ (i.e., omniscient)

and ‘free’ (i.e., unconstrained in their movement, which in addition does not

impose any costs), their distribution strongly depends on the mechanisms of

movement (e.g. the sequence in which they move). Seemingly unimportant

details of the movement process can result in quite different distributions in

space, with different evolutionary implications (Houston and Lang 1998; Netz

et al. 2022a). It is therefore essential to consider the movement process itself.

Yet we currently lack theory that explicitly considers the movement process

itself, linking the short-term ecological drivers and outcomes of movement with

its evolutionary causes— essentially, there is no evolutionary extension to the

‘movement ecology paradigm’ (Holyoak et al. 2008; Nathan et al. 2008). This

hinders insight into how intensified selection on species due to global change

would affect animal movement and related phenomena. Such selection is both

rapid and currently ongoing, making the understanding of its potential conse-

quences more than a purely academic exercise (Bonnet et al. 2022). For example,

the unprecedented warming of their Arctic breeding grounds has caused body

size shrinkage among red knots (Calidris canutus), including the development
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of shorter beaks. On their wintering grounds, this results in lower survival for

shorter-billed individuals (e.g. Van Gils et al. 2016). Similarly, Sergio et al. (2022)

demonstrate how selection winnows out black kites (Milvusmigrans) with poor

navigation capabilities during each annual migration, demonstrating how evolu-

tionary forces can act very rapidly on even complex behavioural traits.

Eco-evolutionary theory, in order to provide general insights, must necessarily

simplify biological reality down to essential processes. One such simplification

has long been to consider movement to be a population-level property shared by

all individuals. Work on consistent behavioural differences in animals, including

differences in movement, suggests that this assumption is not well supported

(Abrahms et al. 2017; Spiegel et al. 2017; Webber and Vander Wal 2018; Shaw

2020;Webber et al. 2020; Stuber et al. 2022). Yet it is not clear whethermovement

syndromes, in the sense of individual consistency and correlation in preferences

for specific environmental conditions, truly exist (as suggested by Stuber et al.

2022), or whether researchers are instead identifying differences among spatial

contexts that heavily influence animal movement (Spiegel and Pinter-Wollman

2022).

A consideration of movement in ecological theory should account for the fact

that animals integrate many internal and external cues whenmaking movement

decisions (Nathan et al. 2008). Individual-based simulationmodels (IBMs) are

well suited to representing movement as a decision made after integrating multi-

ple cues in complex ecological contexts (Huston et al. 1988; DeAngelis and Diaz

2019). However, most IBMs in the study of animalmovement do not tackle the ul-

timate evolutionary drivers of animalmovement strategies (with a few exceptions:

Getz et al. 2015; 2016; Netz et al. 2021b). In Part II, I develop and use a novel

class of eco-evolutionary IBMs for broad conceptual insight into the evolution of

animal movement strategies.

Evolutionarymodels ofmovement rules treat themas population properties (as

inDe Jager et al. 2011; 2020, orMorris 2011), whereasmovement is an individual-

level outcome, and it is on individual outcomes that selection acts. When individ-

uals with different movement strategies have equivalent fitness, populations may

showmovement polymorphisms (Wolf andWeissing 2012; Getz et al. 2015; Shaw

2020). Including evolutionary dynamics in movement models could thus pro-

vide initial predictions for when individual variation (with its own consequences;

Spiegel et al. 2017) should be expected. We could also gain insight into howmove-

ment strategies could possibly evolve under various ecological scenarios. This

second aspect is often ignored, possibly because evolution is considered too slow

to be relevant to the understanding andmanagement of ecological dynamics over

a few decades. This assumption is mistaken, as evolution can be both rapid and

adaptive (Bonnet et al. 2022).
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Animal movement behaviours are of many types, and span spatio-temporal

scales, frommigration to coordinatedmovement within a group. This makes it

challenging to pick a behaviour common to all animals, and whose evolutionary

aspects can be easily studied. For instance, although periodic migration (e.g. Gut-

tal and Couzin 2010) and dispersal (e.g. Hillaert et al. 2018) away from the natal

site in early life have received substantial attention from evolutionary biologists,

these are not common to all or even amajority of taxa. Furthermore, such rare

and sporadic events are especially prone to being genetically controlled, with

only a smaller role for adaptive, fine-scale behavioural strategies. One scenario

in which fine-scale strategies are important is the foraging context. All animals,

as heterotrophs, require intake, making (active or passive) foraging a behaviour

shared by nearly all animal taxa. Even amongmigratory species, foraging is a key

behaviour that enables their journeys. This makes the foraging context a good

starting point for models linking the ecology and evolution of fine-scale adaptive

movement behaviours.

Proposing a NewMethod for Eco-evolutionaryModels of

AnimalMovement

I propose models thatwork forwards from plausiblemechanisms to potential

emergent outcomes (Fig. 1.1). This first requires a change in perspective on

individual-basedmodels, from being highly detailed simulations of specific em-

pirical systems (such as in Stillman and Goss�Custard 2010; Bocedi et al. 2014;

Diaz et al. 2021), to being used to obtain broad conceptual insight into ‘What if …?’

scenarios (see also Getz et al. 2015; 2016; White et al. 2018b; Gupte et al. 2021;

Netz et al. 2021b; Gupte et al. 2022a). The key features of the simulationmodels

we advocate is first, that they aremechanistic, spatially explicit and individual-

centric, i.e., the functional unit of the model is the individual (animal) in a spatial

context, and that interactions among individuals and their environment are based

on plausible mechanisms (Fig. 1.1A). Second, that individualsmove in their spa-

tial context using step-selection based on the sensing of direct local cues, such as

resource or conspecific counts (Fig. 1.1B). The way how an individual chooses

its steps in relation to local cues forms the individual’s movement strategy (see

below). Third and finally, that themodels explicitly include both ecological and

evolutionary timescales and dynamics; we propose this be done by considering

multiple generations, and conditioning an individual’s number of offspring— to

which it passes on its movement strategy— on its ecological performance in the

simulation (Fig. 1.1C). This lastmeans that ecological outcomes in one generation

determine the populationmixture of movement strategies in the next generation,

linking the ecological and evolutionary timescales.
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Mechanistic, Individual-Centric Simulations

The movement ecology paradigm recognises that animal movement is an

individual-level process that integrates available external and internal cues into

movement decisions (Holyoak et al. 2008; Nathan et al. 2008). Furthermore, the

proliferation of animals’ traits via reproduction— including cognitive traits such

as movement strategies — is dependent on individuals’ ecological performance,

upon which natural selection acts (Hofbauer and Sigmund 1988). Consequently

we advocate for simulationmodels that follow this individual-centric approach.

Unsurprisingly, individual-based simulation models (IBMs) are ideal for this task,

as they can include substantial ecological detail, including representing internal

states, and interactions among hundreds of individuals and their environment

(Huston et al. 1988; DeAngelis andMooij 2005; DeAngelis 2018; DeAngelis and

Diaz 2019).

While researchers may begin modelling with a phenomenon inmind, it is im-

portant to shift perspective to instead encodeplausible, well supported individual-

level processes (which we also call mechanisms) that could give rise to such phe-

nomena. All ecological processes, including competition (Keddy2001), signalling

and signal perception (Torney et al. 2011), memory-based navigation (Bracis and

Mueller 2017; Robira et al. 2021), and transmission processes (e.g. learning,

pathogen transfer; see Cantor et al. 2021; Romano et al. 2021) have a strong spa-

tial component. Thus models that study these phenomena should ideally also

incorporate movement, and have an explicit spatial context.

For example, amodel of exploitation competition would begin with the process

that causes it: the depletion of discrete resource items due to individual foraging,

which makes the resource unavailable to others (Keddy 2001: see Fig. 1.1A).

This involves deliberately encoding a sequence of individual-level behaviours:

movement that enables accessing a resource, perception of available resources,

harvestingof the resource, andmost importantly, removal of the resource fromthe

landscape (see also Spiegel et al. 2017; Gupte et al. 2021; Gupte et al. 2022a). Here,

the perspective shift lies in seeing that individual-level processes (movement,

perception, foraging) could lead to the emergence of phenomena (exploitation

competition), when local conditions are met (multiple individuals in the same

vicinity going after the same discrete resource items).

Of course, any biological mechanism is an emergent outcome of constituent

sub-mechanisms, down to the molecular level; some abstraction is therefore

necessary. For simplicity, some ecological and evolutionary aspects will have

to be set aside. This is not to say that issues such as sexual reproduction and

non-randommating (included in Getz et al. 2016), detailed disease dynamics

(seen inWhite et al. 2018b; Scherer et al. 2020), flexible population sizes (as in
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Netz et al. 2021b), or animal memory (e.g. Bracis andMueller 2017; Robira et al.

2021) are not important, but rather that researchers should focus on features of

biological systems that are important to their study. Classical analytical models

regularly make similar modelling choices to arrive at conceptual insight (see

an examination in Van Der Meer and Ens 1997). Implementing these choices

explicitly in simulationmodels’ code helps bring these assumptions to the fore,

promoting robust discussion of their importance to model conclusions.

Movement Strategies as Step-selection

Weconceive of individualmovement across the landscape to take the formof se-

quential step-selection (which we call ‘movement decisions’; see Fig. 1.1B). Box A

provides a primer to the idea of step-selection. In ourmodels, when the individual

moves, it chooses among anumber of potential destinations in its neighbourhood,

including its current location (in which case it remains stationary). Box B pro-

vides a brief overview of how step-selection has been used to encodemovement

in conceptual models. The step choice is made by assigning each potential step

(including the current location) a step-selection score, which we call the ‘suitabil-

ity’, such that every step 𝑖 has a suitability 𝑆 = 𝑠1𝑋1𝑖 + 𝑠2𝑋2𝑖 +…+ 𝑠𝑁𝑋𝑁𝑖 + 𝜖𝑖. Here,
𝑠𝑛 where 𝑛 ∈ (1, 2,…𝑁) is the individual-specific weight or ‘cue preference’ for the
cue 𝑛, and 𝑋𝑛 is the value of the cue at the location 𝑖. We optionally include the

small error term 𝜖𝑖 (typically drawn from a statistical distribution) to approximate

individuals’ error in assessing a location’s suitability. The cue preferences, and

thus the suitability, can have arbitrarily large or small (positive or negative) values.

This is similar to step- and resource-selection coefficients 𝛽 (see Box A Manly

2002; Fortin et al. 2005). Individuals are considered to move to the location with

the highest suitability.
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BOX A. STEP-SELECTION ANALYSIS: AN INTRODUCTION Step-selection

analysis is a method developed from the study of empirical animal movement

data, which seeks to determine the drivers of animal movement, with an early

implementation in Fortin et al. (2005)’s study of the movement of deer in

response to wolves, in Yellowstone National Park. In brief, step-selection analysis

contrasts locations at which animals were observed, against locations that they

could have used instead (Fortin et al. 2005). The locations that are considered to

have been available to an animal are conditioned upon its current location —

essentially, this avoids comparing used locations with distant regions that the

animal could not have used at that time. In this sense step-selection analysis

is essentially similar to conditional resource-selection analysis (see as general

reference Manly et al. 2007). The difference is that in step-selection analysis,

the available locations are sampled from a distribution (usually the Gamma

distribution) fitted to the movement distances obtained from the tracking data,

with relative headings (‘turning angles’; see Calenge et al. 2009) drawn from a

VonMises distribution fitted to the animal’s turning angles, again as seen in the

tracking data (Thurfjell et al. 2014; Signer et al. 2019). The parameters determin-

ing the relative probability that a location is selected given its environmental

attributes (the relative selection strengths, often denoted 𝛽) can be estimated via

a maximum likelihood approach using common statistical software (see e.g. for

R Therneau and Grambsch 2000). Overall, the step-selectionmethod assumes

that the probability that an animal will select a location is given by

�̂�(𝑥) = exp(𝛽1𝑥1 + 𝛽2𝑥2 +…𝛽𝑛𝑥𝑛)

where �̂�(𝑥) is the selection score for a step, 𝛽𝑖 is the relative selection strength for

(or against, if a negative value) the location attribute 𝑥𝑖.

Crucially, when individuals move by step-selection as in our models, the value

of each cue preference 𝑠𝑛 relative to the other cue preferences is more important

than the absolute value of any cue preference by itself (see also the ‘behavioural

hypervolume’ of Bastille-Rousseau andWittemyer 2019). Thus individuals mak-

ing movement decisions based upon three cues 𝑋𝑛 for 𝑛 ∈ (1, 2, 3), that have
relatively similar values of the corresponding cue preferences 𝑠𝑛 may be thought

of as weighing, or preferring each cue relatively equally (or indeed avoiding, if any

𝑠𝑛 < 0). The relative values of each individual’s cue preferences taken together,

may be thought of as the individualmovement strategy. Interlude B shows how

these strategies can be visualised and interpreted when they are comprised of a

small number of preferences.

In our models, we assume individuals have a constant instantaneous speed,

whichmeans that all steps have the same distance (see a similar implementation
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in Spiegel et al. 2017). This is different from step-selection analysis of empirical

data, which draws steps from amovement kernel (Manly 2002; Fortin et al. 2005;

Avgar et al. 2016). Drawing steps from a kernel (see e.g. 2018b) is notmechanis-

tic, as the movement kernel idea derives from a phenomenological description

of movements observed from animal tracking or relocation data (Fortin et al.

2005). Instead, our models allow movement kernels (and overall speeds, and

‘home ranges’) to emerge from individual movement decisions (yet see below for

an alternative). Cues take the form of numeric values assigned to basic compo-

nents of the individual’s local environment, such the number of food items or

of conspecifics (both integer values), or some environmental property, such as

temperature (which could be a decimal value). This allows individuals’movement

decisions to be interactions of intrinsic, heritable preferences, and different com-

ponents of the environment. Spatio-temporal variation in cues can be externally

forced (e.g. periodic fluctuations representing seasonality), but the muchmore

interesting case is when such variation emerges from themovements and other

behaviours of individuals.

Thereare twomainmechanistic alternatives toour linear-function step-selection

approach. First, suitability scores could be computed using more complex func-

tions (e.g. quadratic functions to allow for avoidance thresholds; see White et al.

2018b) — but this could makemovement strategies more challenging to under-

stand. Second, the movement process could be based on separately generating a

movement distance and relative heading (‘turning angle’; Calenge et al. 2009),

rather than selecting from among steps (Mueller et al. 2011). In contrast with

our approach where individuals have a fixed speed, the latter approach allows

variable speeds. The drawback is that while movement distances are easily repre-

sented by linear functions, the turning angle is a circular measure that cannot

be properly linearised. A complex function such as an artificial neural network

(ANN)—standing in for an animal’s cognitivemechanisms—could generate both

distances and valid turning angles, but the ANNparameters would be challenging

to interpret as amovement strategy (Mueller et al. 2011; but see Bastille-Rousseau

and Wittemyer 2019 for dimension reduction approaches). Nonetheless, this

approach is the preferable mechanistic alternative to assuming a movement ker-

nel, as it too allows phenomenological movement descriptors (e.g. home range,

step-length distribution) to emerge from individual movement decisions.

Integrating Ecological and Evolutionary Timescales

The final feature of our model is the integration of ecological and evolutionary

timescales. This can be done by adopting the mechanistic, individual-centric

approach andmodelling reproduction; this allows individuals to pass on heritable

traits — includingmovement strategies — to their offspring. If individuals with
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BOX B. USING STEP-SELECTION IN CONCEPTUAL MODELS Step-

selection analysis is now widely used in animal movement ecology, with

specialised implementations for habitat-specific movement characteristics

(Avgar et al. 2016), decision points identified from very high-resolution data

(Munden et al. 2021); it can also be extended to estimate animals’ utilisation

distributions (Signer et al. 2017). Indeed, recall that step-selection analysis

is used even in this thesis (Chapter 3). Despite its popularity and ease of

implementation, step-selection has seldom been used in individual-based

simulation models of animal movement. One good example of using a step

selection approach isWhite et al. (2018b), who implemented amovement-disease

model wherein individuals move across a grid, with their steps determined by

their relative selection strengths (𝛽𝑖) for cell attributes (𝑥𝑖) such as resource levels
or conspecific densities (in this sense they describe it as resource selection). In

suchmodels, individuals assign a selection score (�̂�(𝑥)) to their current locations,
and to neighbouring locations, andmake the step with the highest score— this

maymean staying in place! Furthermore, 𝛽𝑖 values can be programmed to vary

randomly or systematically in the population, to examine the effect of having

individuals with a broad range of responses to similar cues (as White et al. 2018b

do). In conceptual individual-basedmodels such as mine, I refer to the selection

score as ‘suitability’ 𝑆 = Σ 𝑠𝑖𝑥𝑖 where 𝑆, the suitability of the potential location,
is simply the sum of the interaction of the individual’s selection strengths

(which I call a ‘preference’; 𝑠𝑖) and the value of the corresponding cue at that

location (𝑥𝑖). In contrast with the step-selection approach, I assume that the

individual moves in the direction of maximal suitability. Given that the ‘cue

preferences’ are individual properties, they can be considered to be heritable

between generations of a population, allowing the examination of evolutionary

dynamics. This concept is examined further in the final scenario of mymodel,

andmodels implementing this approach are described in Chapters 4 and 5.

better ecological performance are considered to have more offspring, this would

lead to the proliferation of their strategies. This would allow the mechanistic

movement strategies to have evolutionary consequences, and in a scenario with

discrete, non-overlapping generations, the ecological outcomes of individuals

in one generation would determine the population-level mixture of behavioural

strategies in the next generation. The same evolutionary dynamics could be ap-

plied to individual traits other than the cue preferences as well, to potentially

examine the co-evolution of movement with behavioural or physiological traits

(see e.g. Chapter 4). This approach, which we call the ‘weighted lottery’, de-

rives from population genetics, and specifically from the replicator equation,

which is fundamental to evolutionary biology (Hofbauer and Sigmund 1988). The

replicator equation states that the expected frequency of a strategy in the next
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generation is proportional to its frequency in the present generation, times the

average lifetime reproductive success of individuals using that strategy.

Here it is important to acknowledge that attempts tomimic biological evolution

in individual-basedmodels have previously beenmade, in the form of so-called

‘genetic algorithms’ (GAs: Hamblin 2013). Genetic algorithms have been applied

to animal ecology, often coupled with individual-based models, but are relatively

rare (see Beauchamp and Ruxton 2007; Hamblin et al. 2010; Hamblin 2013; Getz

et al. 2015; 2016), possibly because their development and use is recognised

as unsuitable for evolutionary biology. While GAs were conceptualised to find

the best solutions to complex optimisation problems, many eco-evolutionary

contexts have no single, stable solution; moreover, environmental heterogeneity

maymean that multiple solutions are equally viable (Wolf andWeissing 2012).

Furthermore, the GA conception of selection is often biologically unrealistic

(e.g. truncation and tournament selection; Hamblin 2013). This is illustrated

by Getz et al. (2015), which uses a specific form of truncation selection, called

‘simulated annealing’, wherein only the top 50% of individuals reproduce, and

the frequency of variation (essentially, the rate of mutations) becomes smaller

with each generation— neither of these are good representations of biological

systems. Consequently, I do not believe that the GA approach is broadly suitable

for models that seek to study relatively open-ended evolution (although some

specific cases may be useful; see ‘roulette wheel selection’ in Hamblin 2013).

Versatility of Individual-Based Eco-evolutionaryModels

I focuson threebroadyet relativelydistinct classesof scenarios that areamenable

to investigation using our mechanistic, eco-evolutionary modelling approach.

These are typically scenarios in which our current understanding of animal ecol-

ogy suggests that multiple alternative or co-existing adaptive responses are pos-

sible. I stress that this is how such models should be considered: as tools that

enable the broad exploration of hypothetical scenarios, some of which I lay out

below. I caution against expecting eco-evolutionary dynamics known from ana-

lytical models; for instance, while steady-state eco-evolutionary equilibria may

emerge in some models (e.g. Getz et al. 2015; 2016; Gupte et al. 2021; Gupte

et al. 2022a), it is unrealistic to expect such dynamics from all models (see e.g.

Netz et al. 2021b). Morever, an exploration of the parameter space, especially in

terms of the environmental regime (e.g. environmental productivity, periodic-

ity, or variation), could help generate broad predictive frameworks, with which

empirical data could be compared. Finally, as an added feature, I suggest how

eco-evolutionary IBMs can be used to investigate the performance of statistical

methods commonly used in animal ecology.
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Changes in the Environmental Regime

A key concern currently is knowing how the climate crisis is likely to affect

animal spatial ecology, and I argue it is also important to know whether animal

populations’ evolutionary dynamics are likely to play a large role (e.g. Botero

et al. 2015). For example, climate change is likely to induce greater variability

in environmental conditions, thereby altering the spatial structure of resource

landscapes (e.g. a transition from patchy to homogeneous resource landscapes).

When resources are more homogenously distributed, direct resource cues (𝐹 in
Fig. 1.1) are likely to be more widespread, potentially reducing the importance of

social information (conspecific presence;𝐻,𝑁 in Fig. 1.1), which could indicate a

resource cluster. Yet with resources sparsely distributed, it may be important for

animals to avoid conspecifics already at a resource cluster, to avoid exploitation

competition— this would require social information to acquire a high (negative)

weight for movement decisions. This scenario could be studied by building a

model wherein the landscape spatial structure is altered after an initial (long)

period of stability. Key questions that could be answered with suchmodels are

include whether a change in resource spatial structure — without a change in

actual abundance— can lead to changes in movement strategies; whether move-

ment strategies evolved to deal with changed spatial structure then also result in

a non-ideal distributions of animals relative to resources (a test of Fretwell and

Lucas 1970; Parker 1978); and whether different animal social structures could

emerge (see Tanner and Jackson 2012; Webber et al. 2022).

Joint Evolution ofMovement and Behavioural Strategies

Animal movement strategies alone are insufficient to explain individuals’ eco-

logical niches; individuals must combine these with other decisions, such as

which resources to exploit (Pulliam 1974; Van Gils et al. 2015). In a scenario

where there are two distinct types of prey, individuals could potentially prefer to

use the locally more abundant prey (Emlen 1966; Pulliam 1974). Alternatively,

individuals could specialise upon one of the two prey types; this could be on the

prey type preferred by most other individuals (whereby social information on

prey clustering could be useful; positive density dependence), or indeed upon the

less preferred prey type, as this could reduce competition (negative density depen-

dence). In this context, it is not clear how prey type preferences would evolve, but

movement and foraging strategies could potentially be correlated, making it an

ideal case for exploration with the class of models I advocate. This scenario could

be explored with a model containing two overlapping prey type distributions,

say 𝐴 and 𝐵, and allowing individuals to sense and have a preference for these
different prey types (𝑠𝐴, 𝑠𝐵, instead of 𝑠𝐹 in our Fig. 1.1). Simultaneously, it would

be appropriate to consider prey choice to also be a flexible decision, and allow



INTRODUCTION 19

individuals to mechanistically choose, at each step, which prey type they want to

target. Such a simulation could reveal the emergence of substantial individual

variation in the preferences for the prey types, and potentially correlations with

foragingmovement strategies, forming amovement-behaviour syndrome (see

e.g. Eckhardt 1979). More specific prey choice models could investigate how for-

aging individuals themselves may be a type of prey, through kleptoparasitism—

this scenario is explored in Chapter 4. Models could also be extended to multiple

trophic levels by including predators, in order to study the evolutionary arms-race

of movement strategies between predators and prey (Netz et al. 2021b).

Introduction of NewEco-evolutionary Dynamics

The introduction to an environment of a novel biotic component could sub-

stantially alter existing eco-evolutionary dynamics; the introduction of a novel

pathogen (or strain) to a population is a key example of current relevance (Carlson

et al. 2022a; see also Monk et al. 2022 as a case study). Novel pathogen intro-

ductions should be expected to impose selection against animal sociality (e.g.

Ashby and Farine 2022), but sociality emerges from an interaction of individual

behaviour and the local environment, including the social environment (Tanner

and Jackson 2012). To examine how a novel pathogen could affect the evolution

of animal movement strategies, our modelling framework could be adapted into

a movement-disease model following templates inWhite et al. (2018a). For in-

stance, a pathogen could spread among spatially proximate individualswith some

small probability 𝑝, and impose an energetic (and hence, fitness) cost 𝛿𝐸. Such a
model could reveal whether the novel pathogen introductions impose selective

pressure against individual preferences for sociability as a proxy of transmission

risk (Weinstein et al. 2018). Such a scenario, with special reference to social infor-

mation use, is explored in Chapter 5. Recording and logging spatial associations

and pathogen transmissions among simulation individuals could help provide

useful expectations against which to compare transmission dynamics inferred

from animal tracking data (Wilber et al. 2022; see Robitaille et al. 2019; Albery

et al. 2021 for background).

UsingMechanisticModels to Probe Current StatisticalMethods

Movement models are regularly used to simulate tracks with known features

in order to examine and improve the performance of statistical tools (such as seg-

mentation algorithms; see e.g. Gurarie et al. 2016; Michelot et al. 2016; Patin et al.

2020). One area which could benefit from a similar understanding of commonly

usedmethods is the study of individual variation in movement; specifically, this

could help determine whether studies are truly picking up ‘spatial personali-
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ties’ from the confounding factors of environmental differences among tracked

animals (Spiegel and Pinter-Wollman 2022; Stuber et al. 2022).

The class of mechanistic movement models I advocate could help explore

whether current statistical tools can reliably detect individual differences inmove-

ment decision-makingmechanisms. For instance, recording themovement paths

of model agents, as well as their cue preferences and other traits (e.g. evolved

prey-type preferences), and applying a repeatability approach, could help deter-

mine how the fitting of certain individual attributes as fixed effects could affect

repeatability scores (vs. leaving them out). Similarly, recording the local cues

available to individuals while makingmovement decisions would yield exactly

the matched case-control data used in fitting step-selection functions (see Signer

et al. 2019) Sub-sampling this data (to simulate low-resolution tracking), or using

a static predictor such as landscape productivity (as is often used in empirical

studies; e.g. NDVI: Pettorelli et al. 2011) could help demonstrate the benefits of

using high-throughput tracking (Nathan et al. 2022), and the issues around using

broad static predictors of landscape conditions. Overall, by treating a simulation

model with simple movement strategies as one would empirical animal tracking

data, one could explore the performance of popular statistical tools with data

from known eco-evolutionary contexts — Chapter 6 explores this scenario.

Structure of this Thesis

In this Thesis, I take a broad approach to study both animal movement ecology,

as well as presenting a framework for conceptual models to study the evolution of

animal movement strategies. The thesis is divided into two parts, with five main

chapter that are described here.

Modernmovement ecology has become a ‘big data’ field (Nathan et al. 2022).

In Part I I focus on studying animal movement ecology using tracking data and

correlative statistical models, but from a strongly mechanistic perspective. In

Chapter 2, I synthesise methods that can help overcome current limitations and

issues in modern high-throughput tracking data. I present conceptual workflows

to prepare high-throughput animal tracking data for further analysis, andmay be

seen as amore detailed explanation of the principles I contributed to Nathan et al.

(2022). In brief, modern, high-throughput animal tracking increasingly yields

‘big data’ at very fine temporal scales, and ‘cleaning’ the data to reduce location

errors is one of the main ways to deal with position uncertainty. Though data

cleaning iswidely recommended, robust guidanceonhowtoorganise the cleaning

of massive datasets is relatively scarce. A pipeline for cleaning massive high-

throughput datasets must balance ease of use and computationally efficiency,
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in which location errors are rejected while preserving valid animal movements.

Another useful feature of a pre-processing pipeline is efficiently segmenting and

clustering location data for statistical methods, while also being scalable to large

datasets and robust to imperfect sampling. Onemajor advantage when studying

a particular species is that certain aspects of its biology are known— for example,

the maximum speed it could realistically achieve. These physical constraints can

be taken into account to filter data, and identify behavioural bouts in ways that

are easy to interpret (Barraquand and Benhamou 2008). I show how taking this

mechanistic view to filtering animal positioning data can be used with any high-

throughput animal movement data in which the high data-volume combined

with knowledge of the tracked individuals’ biology can be used to reduce location

errors.

In Chapter 3, I leverage the methods for improving and working with high-

throughput tracking data that I developed in Chapter 2. I take an explicitly mech-

anistic view to studying the drivers ofmovement and habitat selection in a unique

group of animals: moulting birds. The flight surfaces of birdwings require regular

renewal through a process called moult — shedding worn out feathers and grow-

ing fresh ones— presenting birds with the dilemma of needingmore resources

for feather growth just when their flight capacity is reduced, making themmore

vulnerable to predation. I combine animal tracking and experimental approaches

to present a first quantification of the direct effects of wing moult (in terms of

reduced flight efficiency) on the movement and use of sheltered habitats, in four

non-migratory passerine species. Rather than using a broad predictor such as

vegetation productivity as a proxy for shelter (Pettorelli et al. 2011), I instead

take a viewshed ecology approach (Aben et al. 2018), and directly quantified

which areas of the landscape were visibile to potential predators (the ‘fearscape’:

Olsoy et al. 2015). I use the methods, including the residence patch algorithm,

developed in Chapter 2, to measure how non-moulting, naturally moulting, and

artificially manipulated birds use sheltered areas. I apply both simple statistical

models aswell as step-selection analyses to analyse birds’ habitat selection (Fortin

et al. 2005; Avgar et al. 2016). Later, in Part II, I use the models described there to

examine what we can learn about step-selection analysis, by using it to recover

the mechanisms of simulation models (a better explanation of the links between

the two is presented in Chapters 4).

In Part II, I demonstrate how conceptual insights can be obtained frommech-

anistic models of intermediate complexity that integrate both the ecological

dynamics of animal movement, and their evolutionary causes and consequences.

The key feature of such models is to let individual-level ecological outcomes

in one generation influence which movement strategies are present in future

generations, thus establishing a feedback loop between animals’ evolutionary
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history and their current spatial ecology. Specifically, I advocate that movement

bemodelled as an individual response to local cues rather than a randomwalk

or some ruleset shared by all individuals (see Mueller et al. 2011). I have taken

this mechanistic in Chapters 4 and 5. In the models presented in those chapters,

I used individual-based models, in which individuals have evolvedmovement

preferences— these are explained below— and thusmake quite different deci-

sions when presented with similar cues (Getz et al. 2015; White et al. 2018b).

Yet an open question when including such behavioural variation is whether the

emergent outcomesmay be transient phenomena that are quite different from

the dynamics obtained on evolutionary timescales. Consequently, I additionally

advocate for movement models to be embedded in an evolutionary context, with

individuals’ movement outcomes subject to selection, and their movement pref-

erences subject to random change (mutation). I expand on this view further in

this Introduction, and describe the three chapters comprising this Part in brief

below.

In Chapter 4, I examine the joint evolution of movement and two different

foraging strategies: searching for food items, and kleptoparasitism, an extreme

form of interference competition. Although competition has an explicit spatial

context, eco-evolutionary models rarely consider how competition strategies, in-

cluding kleptoparasitism, might evolve alongside evolving movement strategies.

I model movement strategies as heritable, individual-specific combinations of

preferences for environmental cues, similar to step-selection coefficients (Manly

2002; Fortin et al. 2005). Step-selection coefficients have been used previously to

cluster individualswith different preferences for local cues into discrete strategies

(Bastille-Rousseau andWittemyer 2019). I study the evolutionary dynamics of

competition andmovement strategies using individual-based simulations. I addi-

tionally, investigate the implications of this joint evolution for the distribution of

consumers over the model landscape. Overall, this chapter lays the groundwork

for a mechanistic approach to studying competition— and other behaviours —

in a spatial context, and suggests how evolutionary modelling can be integrated

with current work in animal movement ecology.

In Chapter 5, I aim to investigate a scenario that pre-occupied me over the

course of the pandemic: the evolutionary consequences of the introduction of

novel pathogens for animal social interactions, which are of course, outcomes

of animal movement. Using a simulationmodel developed from the work I pre-

sented inChapter 4, I examine howanimals balance the risk of pathogen transmis-

sion against the benefits of public information about the location of ephemeral

resource patches. Studying a scenario in which a fitness-reducing infectious

pathogen is introduced into a population which has initially evolvedmovement

strategies in its absence, I show how pathogen introduction changes host move-
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ment strategies, and how this determines the emergent structure of socio-spatial

networks. The use of the deterministic step-selection framework borrowed from

Chapter 4, which can be directly related to step-selection analyses conducted on

empirical animal tracking data (Bastille-Rousseau andWittemyer 2019), makes

this a powerfulmodelling framework, with initial predictions for the evolutionary

and ecological consequences of wildlife pathogen spillover scenarios.

In Chapter 6, I apply two popular statistical methods, repeatability analysis,

and step-selection analysis, to the movement paths generated by agents from

Chapter 4. Having encoded these agents to move using simplified step-selection,

here, I examine what current statistical methods in movement ecology can tell us

about individual variation in a population where the axes of variation are already

fully known. I show how it is challenging, to recover the true causes of variation

in animals’ movement strategies from their actual movement paths (a major line

of work in movement ecology). I demonstrate that statistical methods can yield

quite different conclusions when applied to data in which underlying movement

strategies are not accounted for, and therefore caution practitioners analysing

empirical data to be careful with potential sources of behavioural variation.

Finally, in Chapter 7, I reflect upon the findings of this thesis, and upon poten-

tial future work.

-.-





Part I

AMECHANISTIC PERSPECTIVEON

ANIMALMOVEMENTECOLOGY

The central challenge of the study of animal movement is knowing

where animals actually are, with a high degree of spatial and tempo-

ral accuracy. Harnessing the massive datasets generated bymodern

tracking systems for robust ecological inferences requires computa-

tional methods that are informed by the biology of the systems to

which they are applied. Additionally, taking a mechanistic view can

reveal the world as animals see it.

In the first part of this thesis, I demonstrate how to deal with large

spatial datasets to investigate the direct drivers of animal movement.

-.-
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Spatial is special.

– A commonmaxim in data science.

Abstract

Modern, high-throughput animal tracking increasingly yields ‘big data’ at very

fine temporal scales, and ‘cleaning’ the data to reduce location errors is one of

the main ways to deal with position uncertainty. Though data cleaning is widely

recommended, inclusive, uniform guidance on this crucial step, and on how to or-

ganise the cleaningofmassivedatasets, is relatively scarce. Apipeline for cleaning

massive high-throughput datasets must balance ease of use and computationally

efficiency, in which location errors are rejected while preserving valid animal

movements. Manual methods being prohibitively time consuming, and to boost

reproducibility, pre-processing pipelines must be automated. We provide guid-

ance on building pipelines for pre-processing high-throughput animal tracking

data to prepare it for subsequent analyses. We apply our proposed pipeline to sim-

ulatedmovement data with location errors, and also show how large volumes of

cleaned data can be transformed into biologically meaningful ‘residence patches’,

for exploratory inference on animal space use. We use tracking data from the

Wadden Sea ATLAS system (WATLAS) to show how pre-processing improves its

quality, and to verify the usefulness of the residence patch method. Finally, with

tracks from Egyptian fruit bats Rousettus aegyptiacus, we demonstrate the pre-

processing pipeline and residence patchmethod in a fully worked out example.

To help with fast implementation of standardised methods, we developed the R

package atlastools, which we also introduce here. Our pre-processing pipeline

and atlastools can be used with any high-throughput animal movement data in

which the high data-volume combinedwith knowledge of the tracked individuals’

movement capacity can be used to reduce location errors.
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Introduction

A
NIMALmovement is an adaptive, integrated response to multiple drivers, in-

cluding internal state, life-history traits and capacities, biotic interactions,

and other environmental factors (Holyoak et al. 2008; Nathan et al. 2008). The

movement ecology framework links the drivers, processes, and fitness outcomes

of animal movement (Nathan et al. 2008), and remotely tracking individual ani-

mals in thewild is themethodologicalmainstay ofmovement ecology (Wikelski et

al. 2007; Nathan et al. 2008; Hussey et al. 2015; Kays et al. 2015). A key challenge

with observed tracks is to extract information on the behavioural, cognitive, social,

ecological and evolutionary processes that shape animal movement. Addressing

this challenge requires investigating the relationships betweenmovement and its

drivers at the fine scales at which animals sense and respond to variation in their

environment. Tracking data, which are observations of a continuous process

(animal movement) at discrete timesteps, reveal useful information about the

movement process when the tracking interval is considerably shorter than the

typical duration of a movement mode (Getz and Saltz 2008; Nathan et al. 2008;

Noonan et al. 2019). This can be accomplished by wildlife tracking systems that

collect position data frommany individuals at high temporal and spatial resolu-

tion (i.e., high-throughput tracking) relative to the scale of the movement mode

of interest (Getz and Saltz 2008).

High-throughput tracking technologies include GPS tags (Strandburg-Peshkin

et al. 2015; Harel et al. 2016; Papageorgiou et al. 2019; Klarevas-Irby et al. 2021),

tracking radars (Horvitz et al. 2014), and computer vision methods for track-

ing entire groups of animals from video recordings (Pérez-Escudero et al. 2014;

Rathore et al. 2020). Furthermore, high-throughput wildlife tracking is routinely

provided by terrestrial reverse-GPS systems such as ATLAS (Advanced Tracking

and Localization of Animals in real-life Systems: Toledo et al. 2014; 2016; Weiser

et al. 2016; Toledo et al. 2020) — see also (MacCurdy et al. 2009; MacCurdy et al.

2019) — and underwater acoustic reverse-GPS tracking of aquatic animals (Jung

et al. 2015; Baktoft et al. 2017; 2019; Aspillaga et al. 2021a,b). Finally, low resolu-

tion tracking over a long durationmay also capture important aspects of animal

behaviour at certain time-scales (e.g. migration, long-range dispersal; Getz and

Saltz 2008), thereby being ‘relatively’ high-throughput.

Although high-throughput tracking provides a massive amount of data on the

path of a tracked animal, these data present a challenge to ecologists. When

tracking animals at a high temporal resolution, the location error of each position

may approach or exceed the true movement distance of the animal, compared

to low-resolution tracking with the same measurement error. This leads to an

over-estimation of the true distance moved by an animal between two discrete
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time-points, leading to unreliable behavioural metrics ultimately derived from

movementdistance, such as speed and tortuosity (seeCalenge et al. 2009;Hurford

2009; Ranacher et al. 2016; Noonan et al. 2019). Additionally, the location error

aroundaposition introduces uncertaintywhen studying the relationship between

animal movements and either fixed landscape features (e.g. roads), or mobile

elements (e.g. other tracked individuals), as well as confounding estimates of

habitat selection.

Users have twomain options to improve data quality, (i)making inferences after

modelling the system-specific location error using a continuous timemovement

model (Jonsen et al. 2003; 2005; Johnson et al. 2008; Patterson et al. 2008; Flem-

ing et al. 2014; Fleming et al. 2020; Aspillaga et al. 2021b), or (ii) pre-processing

data to clean it of positions with large location errors (Bjørneraas et al. 2010). The

first approachmay be limited by the animal movement models that can be fitted

to the data (Fleming et al. 2014; Noonan et al. 2019; Fleming et al. 2020), may

result in unreasonable computation times, or may be entirely beyond the com-

putational capacity of common hardware, leading users to prefer data cleaning

instead. Data cleaning reveals another challenge of high-throughput tracking: the

large number of observations make it difficult for researchers to visually examine

each animal’s track for errors (Weiser et al. 2016; Toledo et al. 2020). Withmanual

identification and removal of errors from individual tracks prohibitively time

consuming, data cleaning can benefit from automation based on a protocol.

Pre-processing of movement data — defined as the set of data management

steps executed prior to data analysis —must reliably discard large location er-

rors, also called outliers, from tracks (analogous to reducing false positives) while

avoiding the overzealous rejection of valid animal movements (analogous to re-

ducing false negatives). How well researchers balance these imperatives has

consequences for downstream analyses (Stine and Hunsaker 2001). For instance,

small-scale resource selection functions can easily infer spurious preference and

avoidance effects when there is uncertainty about an animal’s true position (Viss-

cher 2006). Ecologists recognise that tracking data are imperfect observations

of the underlyingmovement process, yet they implicitly consider cleaned data

equivalent to the ground-truth. This assumption is reflected in popular statistical

methods in movement ecology such as Hidden Markov Models (HMMs) (Lan-

grock et al. 2012), stationary-phase identificationmethods (Patin et al. 2020), or

step-selection functions (SSFs) (Barnett andMoorcroft 2008; Avgar et al. 2016;

Signer et al. 2017), which expect minimal location errors relative to real animal

movement (i.e., a high signal-to-noise ratio). This makes the reproducible, stan-

dardised removal of location errors crucial to any animal tracking study. While

gross errors are often removed by positioning-system algorithms in both GPS

and reverse-GPS setups, ‘reasonable’ errors often remain to confront end users
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(Fischler and Bolles 1981; Ranacher et al. 2016; Weiser et al. 2016). Further,

as high-throughput tracking is deployed in more regions and for more species,

standardised pre-processing steps should be general enough to tackle animal

movement data recovered from a range of environments, so as to enable sound

comparisons across species and ecosystems.

Despite the importance and ubiquity of reducing location errors in tracking

data,movementecologists lack formal guidanceon this crucial step. Pre-processing

protocols are not often reported in the literature, or may not be easily tractable

for mainstream computing hardware and software. Some tracking data, such

as GPS, are autonomously pre-processed without user access to the raw data

(using error estimates and Kalman smooths; Kaplan and Hegarty 2005: and sub-

stantial location errors may yet persist). However, filtering out positions using

estimates of location error alone may not be sufficient to exclude outliers which

represent unrealistic movement but have low error measures (Ranacher et al.

2016;Weiser et al. 2016). When tracking systems domake their raw data available

to researchers, this can enable users to better control the data pre-processing

stage, and to substantially improve data quality while ensuring that cleaning does

not itself lead to unrealistic movement tracks (e.g. Kalman smooths which distort

tracks, Kaplan and Hegarty 2005). This makes identifying and removing biologi-

cally implausible locations from a track an important component of recovering

true animal movement (Bjørneraas et al. 2010).

Even after removing unrealistic movement, a track may be comprised of po-

sitions that are randomly distributed around the true animal location (Noonan

et al. 2019). The large data-volumes of high-throughput tracking allow for a neat

solution: tracks can be ‘median smoothed’ to reduce small location errors that

have remained undetected (e.g. Bijleveld et al. 2016). Large data volumes may

also need to be thinned, for example, examining environmental covariates as

predictors of prolonged residence in an area (see e.g. Aarts et al. 2008; Bijleveld

et al. 2016; Harel et al. 2016; Bracis et al. 2018; Oudman et al. 2018)might require

thinning of high-resolution movement data to match the lower spatial resolution

of environmental measurements. Data thinning and clustering are also required

to avoid non-independent observations due to strong spatio-temporal autocor-

relation, or to examine the effect of sampling scale on movement metrics and

resource-selection (Fleming et al. 2014; Noonan et al. 2019).

When dealingwith datasets that containmanymillions of positions, reseachers

may run into computational limits when trying to apply pre-processing steps

to their full dataset. For instance, the size of workingmemory (RAM) limits the

size of datasets that can be loaded into R, the programming and statistical lan-

guage of choice in movement ecology (Joo et al. 2020a,b; R Core Team 2020).

Data-rich fields such as genomics inspire a possible solution: to break very large
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data into smaller subsets, and pass these subsets through automated computa-

tional ‘pipelines’ (Schadt et al. 2010; Peng 2011). Pre-processing pipelines for

animal tracking data — the set of steps that users apply to prepare the data for a

specific analysis — come with some additional concerns: (i) identifying which

pre-processing steps are necessary, and (ii) ensuring that these steps reproducibly

operate on the data as expected, and as efficiently as possible.

While exploratory data analysis and visualisation can help determine how to

pre-process the data to maximise the signal to noise ratio (Slingsby and Van Loon

2016), standardising implementations of pre-processing techniques into robust,

version controlled software packages (Wickham 2015: e.g. in R, see), can increase

the reliability and reproducibility of animal movement ecology (Haddaway and

Verhoeven 2015; Lewis et al. 2018; Powers and Hampton 2019; Archmiller et al.

2020). Overcoming hard computational constraints on speed andmemory usage

for very large data will often require a combination of programming strategies,

such as using tools optimised for tabular data, or parallelised processing.

Here, we present guidelines for reproducibly pre-processing high-throughput

animal tracking data (Fig. 2.1), with a focus on simple, widely generalisable steps

that help improve data quality (Fig. 2.2). We take two important considerations

into account, that (i) the pre-processing steps should be easily understood and

reproduced, and (ii) our implementations must be computationally efficient and

reliable. Consequently, formalising tools as functions in an R package would

improve portability and reproducibility (Wickham 2015; Marwick et al. 2018).

Using simulated movement tracks, we demonstrate simple yet robust implemen-

tations of the pre-processing steps we recommend, conveniently wrapped into

the R package atlastools (Gupte 2020), with a discussion of features that make

these steps more reproducible, and more efficient. We also suggest one poten-

tial application of high-throughput tracking in studies of animal movement and

space use, illustrated by the first-principles based synthesis of ‘residence patches’

from clusters of spatio-temporally proximate positions (sensu Barraquand and

Benhamou 2008; Bijleveld et al. 2016; Oudman et al. 2018).

In two fully worked out examples using our package on real tracking data, we

show how to apply basic spatio-temporal and data quality filters, how to filter out

unrealisticmovement, andhowto reduce the effect of locationerrorwithamedian

smooth. In the first example, using calibration data from an ATLAS system,

we show how the residence patch segmentation-clusteringmethod can be used

to accurately identify areas of prolonged residence under real field conditions.

Finally, in our second example, we use ATLAS data from Egyptian fruit bats

(Rousettus aegyptiacus) tracked in the Hula Valley, Israel, to show a fully worked

out example of the pre-processing pipeline and the residence patch method.

While our approach to high-throughput tracking data, and our package of pre-
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processing functions was developed with reverse-GPS ATLAS systems inmind,

both are broadly suitable to a wide range of high-throughput animal tracking data

sources, from underwater acoustic reverse-GPS (Jung et al. 2015; Baktoft et al.

2017; 2019; Aspillaga et al. 2021a,b), high-resolution GPS (Strandburg-Peshkin

et al. 2015; Harel et al. 2016; Papageorgiou et al. 2019; Klarevas-Irby et al. 2021),

tracking radars (Horvitz et al. 2014), and visual video tracking (Pérez-Escudero

et al. 2014; Rathore et al. 2020).

Best-Practices for Pre-ProcessingWorkflows

Exploratory data analysis should be the first step towards pre-processingmove-

ment data (see Fig. 2.1; Slingsby and Van Loon 2016). Researchers with very

large datasets of perhaps millions of rows should ideally select a representative

subset of these data for exploratory data analysis, including individuals of dif-

ferent species, sexes, or seasonal cohorts. Examples of exploratory data analysis

include plotting heatmaps of the number of observations per unit area across

the study site (Fig. 2.1). Histograms of the location error estimates, plotting the

linear approximations of animal paths between observations, and histograms of

the sampling interval can help determine how data need to be treated so as to

minimise location errors and improve computational tractability (Fig. 2.1). While

pre-processing steps required for datasets will differ between studies and tracking

technologies, we elaborate upon candidate steps and their parameterisation in

following sections (see also Fig. 2.2).

Following exploratory data analysis and the parameterisation of data cleaning

steps, the specific implementation of these steps should be made reliable and

reproducible. Since reproducing pre-processing steps can be challenging when

using only written descriptions from published articles, providing the code to

implement pre-processing steps reduces ambiguity and increases reproducibil-

ity (Haddaway and Verhoeven 2015). For technically advanced users, the best-

practices here are (i) to implement pre-processing steps as ‘functions’, (ii) to

collect related functions— e.g. for similar kinds of data — into a software ‘pack-

age’, (iii) to ‘test’ that the functions handle input as expected, and (iv) implement

‘version control’ throughout, such that the process of development is documented

(Fig. 2.1; Wickham 2015; Perez-Riverol et al. 2016; Alston and Rick 2020).

As an example, our atlastools package incorporates these best-practices, and

may be used as a reference (Gupte 2020). We have written each pre-processing

step as a separate function, and each of these functions is tested, usually on

simulated data, but in some cases also on empirical data (Wickham 2015: see

the directory tests/ in the associated Zenodo repository). Finally, logging error

messages is crucial when passing data through a pipeline, helping determine
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which data subsets could not be handled as expected, and why. Users who would

prefer to rely on pre-existing toolsets andmethods can use R packages that follow

these best-practices, such asmove (Kranstauber et al. 2011), and sftrack (Boone et

al. 2020). The large size of modern, high-throughput animal tracking data means

that the computational challenge can often be themain challenge inworkingwith

these data. For beginning users, organising their workflows so that they process

subsets of thedata (suchas one individual) at a timecanhelpovercome limitations

on working memory. Animal tracking data stored in a relational database (e.g.

SQL databases Codd 1970), for example, can be broken into meaningful subsets

based on individual identity and tracking season. These smaller subsets can

then be loaded into working memory, pre-processed, and saved in a separate

location (see Supplementary Material 1, Section 2 for a worked out example on

an SQL database). Using existing tools optimised for tabular data, such as the R

package data.table (Dowle and Srinivasan 2020), can also speed up computation;

atlastools is built using data.table for this reason.

More advanced users seeking substantial speed gains might wish to look into

parallel-processing, and process each subset of the data independently of the

full dataset, for example by using a computing cluster (see also Dai 2021: for

an alternative). Finally, another advanced method, used by popular packages

such asmove (Kranstauber et al. 2011) and recurse (Bracis et al. 2018), is to write

one’s own methods in a ‘fast’ low-level language, such as C++, and link these

to R (Eddelbuettel 2013); see also adehabitatLT, which is written partially in C

(Calenge 2006). Beginning practitioners can organise their workflows around

these packages to benefit from the features they incorporate.

Pre-processing Steps, Usage, and Simulating Data

AnOverview of Pre-processing Steps and `atlastools'

In the sections that follow, we lay out pre-processing techniques for raw high-

throughput tracking data, and demonstrate working examples of these tech-

niques, which we have collected in the R package atlastools (see Fig. 2.2). Our

package is aimed at getting ‘raw data’ to the ‘analysis’ stage identified by Joo et

al. (2020) in their review of R packages in movement ecology. The package is

based on data.table, a fast implementation of data frames; thus it is compatible

with a number of data structures from popular packages includingmove, sftrack,

and ltraj objects, which can be converted to data frames (Calenge et al. 2009;

Kranstauber et al. 2011; Boone et al. 2020). Our package functions are suitable for

use with both regularly sampled data, as well as data with missing observations.
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We cover, first, the use of simple Spatio-Temporal Filters to select positions

within a certain time or area. Next, we show how users can Reduce Location

Errorsby removingunreliablepositionsbasedona system-specificerrormeasure,

or by the plausibility of associatedmovement metrics, such as speed and turning-

angle (Calenge et al. 2009; Seidel et al. 2018). We then show how users can tackle

small-scale location errors by applying aMedian Smooth, and users who need

uniformly sampled data, can undertakeDataThinning by either aggregation or

subsampling. At this stage, the data are ready for a number of popular statistical

treatments such as Hidden Markov Model-based classification (Langrock et al.

2012; Michelot et al. 2016). Finally, we show how users wishing simple, efficient

segmentation-clustering of points where the animal showed prolonged residence,

can classify their data into ‘residence patches’ (Barraquand and Benhamou 2008;

Bijleveld et al. 2016) based on the movement ecology of their study species, after

filtering out travelling segments (see System-Specific Pre-Processing Tools).

These pre-processing techniques and package were designed with ATLAS sys-

tems in mind, motivated to meet the rapid growth of studies using this high-

throughput systemworldwide: in Israel (Toledo et al. 2014; 2016; Corl et al. 2020;

Toledo et al. 2020; Vilk et al. 2021), the UK (Beardsworth et al. 2021a,b), and

the Netherlands (Bijleveld et al. 2021; Beardsworth et al. In press). However, the

principles and functions presented here are ready for use with other massive

high-resolution data collected by GPS (e.g. Papageorgiou et al. 2019), reverse-

GPS (e.g. Aspillaga et al. 2021b) or any other high-throughput tracking system .

Users may construct a pre-processing pipeline comprising of all the techniques

we cover, or implement the modules most suitable for their data. Users are ad-

vised to visualise their data throughout their workflow, and especially to perform

thorough exploratory data analysis, to check for evident location errors or other

issues (Slingsby and Van Loon 2016).

Simulating Data to Demonstrate Pre-Processing Steps

To demonstrate pre-processing steps, we simulated a realistic movement track

of 5,000 positions using an unbiased correlated velocity model (UCVM) imple-

mented via the R package smoove (Gurarie et al. 2017: see Fig. 2.3.a). We added

four kinds of error to the simulated track: (i) normally distributed small-scale

offsets to the X and Y coordinates (small-scale error), (ii) normally distributed

large-scale offsets to a random subset (0.5 %) of the positions (spikes), (iii) large-

scale displacement of a continuous sequence of 300 of the 5,000 positions (pro-

longed spikes; indices 500 – 800), and (iv) we removed 10% of the canonical track

to simulate missing data (see Fig. 2.3.a). To demonstrate the residence patch

method, we obtained data, in the form of 1,000 positions, from a mechanistic,

individual-based simulation model, in which agents move using simple decision
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making rules, and can find high-productivity patches using only ephemeral cues,

such as the density of prey-items and other competitors (Gupte et al. 2021; Netz

and Gupte 2022). The emergent, complex track structure is analogous to the for-

aging movements of animals, and provides a suitable challenge for the residence

patchmethod and helps to demonstrate its generality.

Spatio-Temporal Filtering

Spatial Filtering Using Bounding Boxes and Polygons

First, users should exclude positions outside the spatial bounds of a study area

by comparing position coordinates with the range of acceptable coordinates (the

bounding box), and removing positions outside them (Fig. 2.3.a). A bounding

box filter does not require a geospatial representation such as a shapefile, and

can help remove unreliable data from a tracking system that is less accurate

beyond a certain range (Beardsworth et al. In press). In some special cases, users

may wish to remove positions inside a bounding box, either because movement

behaviour within an area is not the focus of a study, or because positions recorded

within an area are known to be erroneous. An example of the former is studies of

transit behaviour between features which can be approximated by their bounding

boxes. Instances of the latter are likely to be system specific, but are known from

ATLAS systems. Bounding boxes are typically rectangular, and users seeking to

filter for other geometries, such as a circular or irregularly-shaped study area,

need a geometric intersection between their data and a spatial representation of

the area of interest (e.g. shapefile, geopackage, or sf -object in R). The atlastools

function atl_filter_bounds implements both bounding box and explicit spatial

filters, and accepts X and Y coordinate ranges, an sf -polygon or multi-polygon

object (Pebesma 2018), or any combination of the three to filter the data. When

both coordinate ranges and a polygon are provided, the data is first filtered by

the ranges and then the polygon. The boolean function argument remove_inside

determines whether positions inside the bounds are retained (FALSE) or removed

(TRUE).

Temporal and Spatio-temporal Filters

Tracking data might fail to properly represent an animal’s movement at cer-

tain times, for instance, data recorded before release, or data from shortly after

release when the animal is still influenced by the stress of capture and handling.

Periods of poor tracking quality may result from systemmalfunctions and un-

usual disturbances, and users may wish to exclude these data as well. Temporal
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Figure 2.3: Simulatedmovement data showing four kinds of artificially added errors. (i)
Normally distributed small-scale error on each position, (ii) large-scale error added to 0.5% of
positions, (iii) 10% of positions removed to simulate missing data, and (iv) 300 consecutive
positions displaced to simulate a gross distortion affecting a continuous subset of the track. (a)
Tracks can be quickly filtered by spatial bounds (dashed grey lines) to exclude broad regions
(green = retained; grey = removed). (b) location error may affect single observations resulting
in point outliers or ‘spikes’ (red crosses and track segments), or continuous subsets of a track,
called a ‘prolonged spike’ (purple circles, top right), and both represent unrealistic movement.
(c)Histograms of speed for the track (grey = small-scale errors, red = spikes), and the prolonged
spike (purple) show that while spikes could be removed by filtering out positions with both high
incoming and outgoing speeds and turning angles, prolonged spikes cannot be removed in this
way, and should be resolved by conceptualising algorithms that find the bounds of the distortion
instead. Users should frequently check the outputs of such algorithms to avoid rejecting valid
data.

filtering can exclude positions from intervals when data are expected to be un-

reliable for ecological inference, either due to abnormal movement behaviour

or system-specific issues. Temporal filters can be combined with spatial filters

to select specific time-location combinations. For example, studies of foraging

behaviour of a nocturnal animal would typically exclude tracking data from the

animal’s daytime roosts (seeWorked Out Example). Users should apply filters in

sequence rather than all at once, and visualise the output after each filtering step
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(‘sanity checks’; see Supplementary Material Section 2). The atlastools function

atl_filter_covariates allows convenient filtering of a dataset by any number of

logical statements, including querying data within a spatio-temporal range. The

function keeps only those data which satisfy each of the filter conditions, and

users must ensure that the filtering variables exist in their dataset in order to

avoid errors.

Filtering to Reduce Location Errors

Filtering onData Quality Attributes

Tracking data attributes can be good indicators of the reliability of positions cal-

culated by a tracking system (Beardsworth et al. In press). GPS systems provide di-

rectmeasures of location error during localisation (Ranacher et al. 2016: Horizon-

tal Dilution of Precision, HDOP in GPS), while in reverse-GPS systems, a measure

referred toas StandardDeviation (SD inmanydatasets), canbecalculated fromthe

variance-covariance matrix of each position as: SD = √Var X + Var Y + Cov XY

(see details in MacCurdy et al. 2009; Ranacher et al. 2016; Weiser et al. 2016;

MacCurdy et al. 2019). Tracking data can also include indirect indicators of data

quality. For instance, GPS systems’ location error may be indicated indirectly by

the number of satellites involved in the localisation. In reverse-GPS systems too,

the number of base stations involved in each localisation is an indirect indicator

of data quality, and positions localised using more receivers are usually more

reliable (the minimum required for an ATLAS localisation is 3; see Weiser et al.

2016; Beardsworth et al. In press). A location error measure associated with each

coordinate pair (similar to GPS HDOP) can be calculated and assigned to a new

column SD using the formula for the sum of correlated random variables

𝑆𝐷 = √𝑉𝐴𝑅𝑋 + 𝑉𝐴𝑅𝑌 + 2 × 𝐶𝑂𝑉𝑋𝑌

Unreliable positions can be removed by filtering on direct or indirect measures

of quality using atl_filter_covariates. While filtering on direct quality attributes

and unrealistic movement speeds (see below) will often be sufficient, filtering on

indirect quality indicators is a strategy to consider when direct error measures

are not available.

Filtering UnrealisticMovement

Filtering on system-generated attributes may not remove all erroneous posi-

tions, and the remaining data may still include biologically implausible move-

ment. Users are encouraged to visualise their tracks before and after filtering
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point locations, and especially to ‘join the dots’ and connect consecutive positions

with lines (Fig. 2.3.b). Whether the resulting track looks realistic is ultimately

a subjective human judgement, but any decision to filter-out data must remain

independent of the hypothesised movement behavior. This basic principle does

not preclude explicitly integrating prior knowledge of the movement ecology

of the study species to ask, ‘Does the animal move this way?’. Segments which

appear to represent unrealistic animalmovement are often obvious to researchers

with extensive experience of the study system (the non-movement approach; see

Bjørneraas et al. 2010). Since it is both difficult and prohibitively time consum-

ing to exactly reproduce expert judgement when dealing with large volumes of

tracking data frommultiple individuals, some automation is necessary. Users

should first manually examine a representative subset of tracks and attempt to

visually identify problems— either with individual positions, or with subsets of

the track— that persist after filtering on system-generated attributes. Once such

problems are identified, users can conceptualise algorithms that can be applied

to their data to resolve them.

A common example of a problem with individual positions is that of point

outliers or ‘spikes’ (Bjørneraas et al. 2010), where a single position is displaced far

from the track (see Fig. 2.3.b). Point outliers are characterised by artificially high

speedsbetween theoutlier and thepositions before andafter (called incomingand

outgoing speed, respectively; Bjørneraas et al. 2010), lending a ‘spiky’ appearance

to the track. Removing spikes is simple: remove positions with extreme incoming

and outgoing speeds. Users must first define plausible upper limits of the study

species’ speed (Calenge et al. 2009; Seidel et al. 2018). Here, it is important to

remember that speed estimates are scale-dependent; high-throughput tracking

typically overestimates the speed between positions where the animal is station-

ary or moving slowly, due to small-scale location errors (Ranacher et al. 2016;

Noonan et al. 2019). Even after datawith large location errors have been removed,

it is advisable to begin with a liberal (high) speed threshold that excludes only the

most unlikely speeds. Estimates of maximum speedmay not always be readily

obtained for all species, and an alternative is to use a data-driven threshold such

as the 90th percentile of speeds from the track. Once a speed threshold 𝑆 has been
chosen, positions with incoming and outgoing speeds > 𝑆may be identified as

spikes and removed.

Some species can realistically achieve speeds > 𝑆 in fast transit segments when

assisted by their environment, such as birds with tailwinds, and a simple filter on

incoming and outgoing speeds would exclude this valid data. To avoid removing

valid, fast transit segments while still excluding spikes, the speed filter can be

combined with a filter on the turning angles of each position (see Calenge et al.

2009; Bjørneraas et al. 2010). This combined filter assumes that positions in high-
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throughput tracking with both high speeds and large turning angles are likely to

be due to location errors, since most species are unable to turn sharply at very

high speed. Users can then remove those positions whose incoming and outgoing

speeds are both > 𝑆, and where 𝜃 > 𝐴 (sharp, high-speed turns), where 𝜃 is the
turning angle, and 𝐴 is the turning angle threshold. Many other trackmetricsmay

be used to identify implausiblemovement and to filter data (Seidel et al. 2018). At

this early stage in pre-processing, track metrics should be considered provisional

— it is not until after smoothing and potentially resampling to a regular interval

(see below), that calculated track metrics should be used for ecological inference.

Sometimes, entire subsets of the track may be affected by the same large-scale

location error. For instance, multiple consecutive positions may be roughly trans-

lated (geometrically) away from the real track and form ‘prolonged spikes’, or

‘reflections’ (see Fig. 2.3.b). These cannot be corrected by targeted removal of

individual positions, as in Bjørneraas et al.’s approach (2010), since there are no

positions with both high incoming and outgoing speeds, as well as sharp turn-

ing angles, that characterise spikes. Since filtering individual positions will not

suffice, algorithms to correct such errors must take a track-level view, and target

the displaced sequence overall. Track-subset algorithms are likely to be system-

specific, andmay be challenging to conceptualise or implement. In the case of

prolonged spikes, one relatively simple solution is identifying the bounds of dis-

placed segments, and removing positions between them. This identification can

be based on relatively simple rules — for example, the beginning of a prolonged

spike could be identified as a position with a high incoming speed, but a low

outgoing speed, while the end of such a spike would have a low incoming, but

a high outgoing speed. We have implemented an illustrative example of such

an algorithm in the form of track-subset filtering for prolonged spikes using the

atlastools function atl_remove_reflections (see the atlastools documentation for

details on the algorithm). Users are strongly encouraged to visualise their data

before and after applying such algorithms; as these methods are not foolproof,

and data that are heavily distorted by errors affecting entire track-subsets should

be used with care whenmaking further inferences.

Smoothing and ThinningData

Median Smoothing

After filtering out large location errors, the track may still look ‘spiky’ at small

scales, and this is due to smaller location errors that are especially noticeable

when the individual is stationary or moving slowly (Noonan et al. 2019). These

smaller errors are challenging to remove since their attributes (such as speed and
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turning angles) are within the expected range of movement behaviour for the

study species. The large data volumes of high-throughput tracking allow users

to resolve this problem by smoothing the positions. The most basic ‘smooths’

work by approximating the value of an observation based on neighbouring values.

For a one-dimensional series of observations, the neighbouring values are the 𝐾
observations centred on each index value 𝑖. The range 𝑖 − (𝐾 − 1)/2… 𝑖 + (𝐾 − 1)/2
is referred to as themoving window as it shifts with 𝑖, and𝐾 is themoving window

size. A common smooth is nearest neighbour averaging, in which the value of an

observation 𝑥𝑖 is the average of the moving window 𝐾. Themedian smooth is a

variant of nearest neighbour averaging which uses the median rather than the

mean, and is more robust to outliers (Tukey 1977). The median smoothed value

of the X coordinate, for instance, is

𝑋𝑖 =Median(𝑋𝑖−(𝐾−1)/2…𝑋𝑖+(𝐾−1)/2).

Users can apply a median smooth with an appropriate 𝐾 independently to the

X and Y coordinates of a movement track to smooth it (see Fig. 2.4.a – e). The

median smooth is robust to even very large temporal and spatial gaps, and does

not interpolate between positions when data aremissing. Thus it is not necessary

to split the data into segments separated by periods ofmissing observations when

applying the filter (see Fig. 2.4).

Somedata sources, suchasGPS,provide tracks thathavealreadybeensmoothed

in quite sophisticated ways, such as with a Kalman filter, making a median

smooth unnecessary (Kaplan and Hegarty 2005). Furthermore, smoothing is

not a panacea for data quality issues, and has its drawbacks. Smoothing does

not change the number of observations, but does decouple the coordinates from

some of their attributes. For instance, smoothing breaks the relationship be-

tween a coordinate and the location error estimate around it (VARX, VARY, and

SD in ATLAS systems). Since the X and Y coordinates are smoothed indepen-

dently, the smoothed coordinates of an observation will likely differ from all the

coordinates used to compute the smoothed value. Any position covariates (e.g.

environmental values such as landcover or elevation) obtained before smoothing

should be replaced with the covariates obtained at the smoothed coordinates.

Similarly, instantaneous track metrics, such as speed and turning angle, should

also be updated at this stage to reflect the smoothed coordinates. Furthermore,

the location error estimate around each coordinate, and around the localisation

overall, become invalid and should be ignored. This makes subsequent filtering

onmeasures of data quality unreliable, and smoothed data are unsuitable for use

with methods that model location uncertainty (Fleming et al. 2014; Calabrese

et al. 2016; Noonan et al. 2019; Fleming et al. 2020). Thus, when applying loca-

tion error modelling methods, users should ensure that the error measure bears
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a mechanistic relationship with the location estimate (see Noonan et al. 2019;

Fleming et al. 2020: formore details). Additionally, excessively large𝐾may result

in a loss in detail of the individual’s small-scale movement (compare Fig. 2.4.e

with 2.4.a). Users must themselves judge how best to balance large-scale and

small-scale accuracy, and choose 𝐾 accordingly. Median smoothing is provided

by the atlastools function atl_median_smooth, with the only option being the

moving window size, whichmust be an odd integer.

Figure 2.4:Median smoothingposition coordinates reduces small-scale location error in
trackingdata. The goal of this step is to approximate the simulated canonical track (black line,
(a)), given positions with small-scale error that remains after filtering in previous steps (green
points). (b) Median smoothing the position coordinates (green points, in (a)) over a moving
window (𝐾) of 21 positions gives a good approximation (blue line) of the canonical track, and
is a significant improvement on the unsmoothed track (grey lines and points). While 𝐾 should
usually be at least two orders ofmagnitude less than the number of positions in the track, users are
cautioned that there is no correct 𝐾, and theymust subjectively choose a 𝐾whichmost usefully
trades small-scale details of the track for large-scale accuracy. Here, smoothing with a 𝐾 of (c) 5
(dark grey line) and (d) 11 (blue line), leads to a jagged track, compared to the true path in (a), and
the distance moved by the animal would be overestimated. (e)Using extremely large values of 𝐾
(101) may lead to a loss of both large and small scale detail (red line). Across panels, grey lines
and points show the track without smoothing.



PRE-PROCESSING ANIMAL TRACKING DATA 45

ThinningMovement Tracks

Most data at this stage are technically ‘clean’, yet the volume alonemay pose

challenges for lower-specification or older hardware and software if these are

not optimised for efficient computation. Thinning data i.e., reducing their vol-

ume, need not compromise researchers’ ability to answer ecological questions;

for instance, proximity-based social interactions lasting 1 – 2 minutes would

still be detected on thinning from a sampling interval of 1 second to 1 minute

(Aspillaga et al. 2021a). Thinning data also does not imply that efforts to collect

high-throughput movement data are ‘wasted’, as rich movement datasets enable

more detailed andmore accurate representation of the true track, as elaborated

above. Indeed, some analyses require that temporal auto-correlation in the data

be broken by subsampling the data to a lower resolution; these include traditional

kernel density estimators for animal home-range, as well as resource selection

functions (Manly et al. 2007; Fleming et al. 2014; Dupke et al. 2017). Furthermore,

a number of powerful methods in movement ecology, including HiddenMarkov

Models and integrated Step-Selection Analysis recommend uniform sampling

intervals (Langrock et al. 2012; Avgar et al. 2016; Michelot et al. 2016). Finally,

subsampling data may be an important strategy in exploratory data analysis; for

instance, it allows researchers to determine whether computationally intensive

methods, such as distance and speed estimates from continuous timemovement

model fitting, are required for their data, or whether the movement metrics sta-

bilise at a certain time scale (Noonan et al. 2019). Two plausible approaches here

are subsampling and aggregation, and both approaches begin with identifying

time-interval groups (e.g. of 1minute). Subsampling picks one position fromeach

time-interval groupwhile aggregation involves computing themean ormedian of

all system-generated attributes for positions within a time-interval group. Here

again, users should repeat the extraction of any environmental covariates for the

thinned data, and may wish to obtain the mean values in a radius aroung the

locations, rather than point estimates alone. Both approaches yield one position

per time-interval group (Fig. 2.5.a). Categorical variables, such as the habitat type

associated with each position, can be aggregated using a suitablemeasure such as

the mode. We caution users that thinning causes an extensive loss of small-scale

detail in the data, and should be used carefully.

Both aggregation and subsampling have their relative advantages. The ag-

gregation method is less sensitive to selecting point outliers by chance than

subsampling. However, to account for location error with methods such as state-

space models (Jonsen et al. 2003; 2005; Johnson et al. 2008) or continuous time

movement models (Fleming et al. 2014; Calabrese et al. 2016; Gurarie et al. 2017;

Noonanet al. 2019; Fleminget al. 2020), correctlypropagating the locationerror is

important, and subsampling directly propagates these errors without further pro-
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cessing. In reverse-GPS systems systems the location error is calculated from the

variance-covariance matrix of the coordinates of candidate positions considered

by the location solver (Weiser et al. 2016); this is equivalent to GPS systems’HDOP

(Ranacher et al. 2016). In the aggregationmethod, the location error around each

coordinate provided by either GPS or reverse-GPS systems can be propagated—

assuming the errors are normally distributed— to the averaged position as the

sum of errors divided by the square of the number of observations contributing

to each average (𝑁):

Var(𝑋)agg = (
𝑖=𝑁
∑
𝑖=1

Var(𝑋)𝑖) /𝑁 2

Similarly, the overall location error estimate for the average of 𝑁 positions in a

time-interval can be calculated by treating it as a variance. For instance, the AT-

LAS error and GPS errormeasures (SD andHDOP, respectively) can be aggregated

as:

SDagg 𝑜𝑟HDOPagg =
√√
⎷(

𝑖=𝑁
∑
𝑖=1

SD2
𝑖 𝑜𝑟HDOP

2
𝑖 ) /𝑁 2

Users may question why thinning, which can obtain consensus positions over

an interval and also reduce data-volumes should not be used directly on the raw

data. We caution that thinning prior to excluding unrealistic movement and

smoothing (Fig 5.b) can lead to preserving artefacts in the data, and estimates

of essential metrics — such as straight-line displacement (and hence, speed) —

that are substantially different from the true value (see Fig. 2.5.c; Noonan et al.

2019). In our example, the data with errors would have to be thinned to 1
30

th

of its volume for the median speed of the thinned data to be comparable with

the overall median speed — this is an undesirable step if the aim is fine-scale

tracking. Additionally, the optimal level of thinning can be difficult to determine,

especially if there is wide individual variation in movement behaviour, and the

mis-estimation of track metrics from inappropriately thinned data could have

consequences for the implementation of subsequent filters based on detecting

unrealistic movement. However, thinning before data-cleaning has its place as a

useful step before exploratory visualisation of themovement track, since reduced

data-volumes are easier to handle for plotting software. Thinning is implemented

in atlastools using the atl_thin_data function, with either aggregation or sub-

sampling (specified by themethod argument) over an interval using the interval

argument. Grouping variable names (such as animal identity) may be passed as a

character vector to the id_columns argument.
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System-Specific Pre-processing Tools

When researchers’ pre-processing requirements exceed the functionalities of

existing tools, they might have to conceptualise and implement their ownmeth-

ods. For instance, an important and common analysis with animal tracking data

is to link space use with environmental covariates. This is difficult even with

smoothed and thinned high-throughput data, as these may be too large for sta-

tistical packages, or have strong autocorrelation. Users aiming for such analyses

can benefit from segmenting and clustering the data into spatio-temporally inde-

pendent bouts of different behavioural modes (Patin et al. 2020). Treating these

as the unit of observation also conveniently sidesteps pseudo-replication and re-

duces computational requirements. While numerousmethods of segmenting and

clustering data are in use, theymay not be scalable to very large or gappy datasets

(Langrock et al. 2012; Michelot et al. 2016; Patin et al. 2020). As an alternative, a

first-principles approach that segments data based on themovement capacity (top

speed, etc.) of tracked animals, could provide a fast, yet useful way to cluster data.

Here, as a working example that may be suitable for some systems, we present a

simple segmentation-clustering algorithm tomake ‘residence patches’, identified

as bouts of relatively stationary behaviour (Barraquand and Benhamou 2008;

Bijleveld et al. 2016; Oudman et al. 2018). Details of the implementation may

be found in the package code, and examples are provided in the Supplementary

Material.

Conceptualising a Simple Segmentation-Clustering Algorithm: The

Residence-Patch Example

Before implementing the algorithm, users should identify positions where the

animal is relatively stationary, for instance on its speed or first-passage time (Bar-

raquand andBenhamou2008; Bracis et al. 2018). Our suggested algorithmbegins

by assessing whether consecutive stationary positions are spatio-temporally in-

dependent, and clusters them together into a residence patch if they are not.

This clustering could be based on a simple proximity threshold— points farther

apart than some threshold distance are likely to represent two different residence

patches. In cases where animals visit multiple sites in sequence (such as traplin-

ing: Thomson et al. 1997), and which researchers might wish to consider as a

single residence patch, a larger-scale distance threshold can help cluster nearby

residencepatches together, and this canalso be applied to cluster together patches

artificially separated due to missing data. Our algorithm separates two observa-

tions at a similar location, but at two very different time points, by comparing the

intervening time-lag against a time-difference threshold, which can also apply to

patches that would otherwise be clustered by the large-scale distance threshold.
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Users are encouraged to base these thresholds on themovement habits of their

study species (see theWorked Out Example).

We have implemented a working example of the simple clustering concept pre-

sented here as the function atl_res_patch (see Fig. 2.6.b), which requires three pa-

rameters: (i) the distance threshold between positions (called buffer_size), (ii) the

large-scale distance threshold between clusters of positions (called lim_spat_in-

dep), and (iii) the time-difference threshold between clusters (called lim_time_in-

dep). Clusters formed of fewer than a minimum number of positions can be

excluded. Our algorithm performs well whenmovement modes are clearly sepa-

rated, and is capable of correctly separating positions that are close together in

space and time, butwhich comprise different behavioural sequences (see Fig. 2.6).

While the algorithmmay not cover all possible use-cases and study species, we

provide it here as an example of a user-built exploratory method for animal track-

ing data. It is important to systematically test such custom-made algorithms, to

ensure reproducibility and reliability (Wickham 2015; Marwick et al. 2018). Sim-

ple examples of such tests for the residence patch method and other functions in

atlastoolsmay be found in the tests/ directory in the associated Github repository.

AReal-World Test of User-Built Pre-Processing Tools

We applied the pre-processing pipeline using atlastools functions described

above to an ATLAS dataset to verify that the residence patchmethod could cor-

rectly identify known stopping points (see Fig. 2.7). We collected the data (n =

50,816) on foot and by boat, with a hand-held WATLAS tag (sampling interval

= 1s) around the island of Griend (53.25∘N, 5.25∘E) in August 2020 (WATLAS:

Wadden SeaATLAS systemBijleveld et al. 2021; Beardsworth et al. In press). Since

the data were intended to test the accuracy of the WATLAS system, we were able

to log stops in the track as waypoints using a handheld GPS device, andmanually

annotate theWATLAS data with the timestamp of each waypoint (Garmin Dakota

10; see Beardsworth et al. In press). We estimated the real duration of each stop

as the time difference between the first and last position recorded within 50m of

each waypoint, within a 10minute window before and after the waypoint times-

tamp (to avoid biased durations from revisits). Stops had amedian duration of

10.28 minutes (range: 1.75 minutes – 20minutes; see Supplementary Material).

We cleaned the data before constructing residence patches by (i) removing a single

outlier (> 15 kmaway), removing unrealisticmovement (≥ 15m/s), smoothing the

data (𝐾 = 5), and (iv) thinning the data by subsampling over a 30 second interval.

The cleaning steps retained 37,324 positions (74.45%), while thinning reduced

these to 1,803 positions (4.8% positions of the smoothed track). Details and code

are provided in the Supplementary Material (see Validating the Residence Patch

Method with Calibration Data).
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Figure 2.6:Movement tracks canbe classified into residencepatches,while leaving out
the transit between them. (a) A simulated animal movement track from Gupte et al. 2021,
where an agent uses local cues to make movement decisions to maximise intake. The agent tends
to stop (solid circles) on high-productivity areas of the landscape, as these are more likely to
generate prey-items. Transit points between stationary phases are shown as crosses. (b) Our
simple, first-principles based clustering algorithm classifies the track into five residence patches.
Some transit points are erroneously classified as being part of a residence patch (top, yellow),
illustrating why is it important to remove such data before applying this method. Simultaneously,
somepointswhere the animal is not stationary for long are not picked upby themethod. While the
large purple patch (bottom) is composed almost entirely of consecutive positions, the subsequent
patches are composed of multiple parts. This is because our method was designed to be robust
to missing data from empirical tracks; the spatial and temporal limits of splitting and lumping
can be controlled using the arguments passed to atl_res_patch, and can be adjusted to fit the
study system. Users are cautioned that there are no ‘correct’ options, and the best guide is the
behavioural biology of the tracked individual.

Webegan by visualising the data to check for location errors, and found a single

outlier position approx. 15km away from the study area (Fig. 2.7.a). This outlier

was removed by filtering data by the X coordinate bounds using the function

atl_filter_bounds; X coordinate bounds ≤ 645,000 in the UTM 31N coordinate

reference systemwere removed (n = 1; remaining positions = 50,815). We then
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calculated the incoming and outgoing speed, as well as the turning angle at each

position using the functions atl_get_speed and atl_turning_angle respectively, as

a precursor to targeting large-scale location errors in the form of point outliers.

We used the function atl_filter_covariates to remove positions with incoming and

outgoing speeds ≥ the speed threshold of 15m/s (n = 13,491, 26.5%; remaining

positions = 37,324, 73.5%; Fig. 2.7.b). This speed threshold was chosen as 5

m/s faster than the known boat speed, 10m/s. Finally, we targeted small-scale

location errors by applying a median smooth with a moving window size 𝐾 = 5

using the function atl_median_smooth (Fig. 2.7.c). This step does not reduce the

number of positions.

We identified stationary positions as those where the median smoothed speed

(𝐾 = 5) was < 2m/s, as people or a boat moving any faster are likely to be in transit.

We clustered these positions into residencepatcheswith a buffer radius of 5m, spa-

tial independence limit of 50m, temporal independence limit of 5 minutes, and a

minimum of 3 positions per patch. Inferred residence patches corresponded well

to the locations of stops (see Fig. 2.7.c). However, the residence patch algorithm

detected sevenmore stops (n = 28) than there were waypoints (n waypoints = 21).

One of thesewas the field station onGriendwhere the tagwas stored between trips

(red triangle, Fig. 2.7.c), while another patch was formed of positions recorded

while waiting for the boat; such unintended stops, not recorded as waypoints,

likely accounted for the remaining five ‘extra’ residence patches. Our analysis

also did not detect two stops of 105 and 563 seconds (1.75 and 9.4minutes) since

they were data poor and were cleaned away during pre-processing (n positions =

6, 15), highlighting that the quality of the raw data (as in the rest of the track) is

still a limiting factor on the inferences that are possible after pre-processing. To

determine whether the residence patchmethod correctly identified the duration

of detected stops in the calibration track, we first extracted the patch attributes

using the function atl_patch_summary. We then matched the patches to the way-

points by their median coordinates (rounded to 100 metres). We assigned the

inferred duration of the stop as the duration of the spatially matched residence

patch. We compared the inferred duration with the real duration using a linear

model with the inferred duration as the only predictor of the real duration. In-

ferred duration was a good predictor of the real duration of a stop (linear model

estimate = 1.021, t-value = 12.965, 𝑝 < 0.0001, 𝑅2 = 0.908; see Supplementary

Material Fig. 2.1.7). This translates to a 2% underestimation of the stop duration

at a tracking interval of 30 seconds. Finally, any classification algorithm will

present users with a trade-off between over-sensitivity (erroneously finding stops

where there were none), and under-sensitivity (missing stops where they are not

local or long enough)— users should balance between these based on the broader

questions sought to be answered.
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Figure 2.7: Pre-processing steps forWATLAS calibrationdata showingfiltering on speed,
median smoothing and thinning by aggregation, andmaking residence patches. (a) Posi-
tions with incoming and outgoing speed > 15m/s are removed (grey crosses = removed, green
points = retained). (b) Raw data (grey crosses), median smoothed positions (green circles; moving
window 𝐾 = 5), and the smoothed track thinned by aggregation to a 30 second interval (purple
squares). Square size corresponds to the number of positions used to calculate the averaged
position during thinning. (c) Clustering thinned data into residence patches (green polygons)
yields robust estimates of the location of known stops (purple triangles). The algorithm identified
all areas with prolonged residence, including those which we had not intended to be recorded,
such as stops at the field station (n = 12; red triangle). Our analysis could not find two stops of 105
and 563 seconds duration (6 and 15 fixes, respectively), since these were lost in the data thinning
step; one of these is shown here (purple triangle without green polygon).

AWorked-Out Example onAnimal Tracking Data

We present a fully worked-out example of our pre-processing pipeline and

residence patch method using movement data from three Egyptian fruit bats

(Rousettus aegyptiacus) tracked using the ATLAS system in the Hula Valley, Is-

rael (33.1∘N, 35.6∘E) (Toledo et al. 2020; Lourie et al. 2021). Code and data can

be found in the Supplementary Material and Zenodo repository (see Processing

Egyptian Fruit Bat Tracks). Data selected for this example were collected over

three nights (5th – 7th May, 2018), with an average of 13,370 positions (SD = 2,173;

range = 11,195 – 15,542; interval = 8 seconds) per individual. Plotting the tracks
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revealed potential location errors (see Fig. 2.1, see also Supplementary Material

Fig.2.1), which we filtered out by removing observations with ATLAS SD > 20 (see

SupplementaryMaterial Section 2.5), as well as removing observations calculated

using fewer than four base stations, altogether trimming 22% of the raw data

(mean positions remaining = 10,447 per individual). Then, we removed unrealis-

tic movement represented by positions with incoming and outgoing speeds > 20

m/s that exceed themaximumflight speed recorded in this species (15m/s; Tsoar

et al. 2011), leaving 10,337 positions per individual on average (98% of previous

step). Wemedian smoothed the data with a moving window 𝐾 size = 5, and no

observations were lost.

We aimed to study bats’ night-time foraging on fruit trees by quantifying the

duration of bats’ residence patches. We began the construction of residence

patches by finding the residence time within 50metres of each position; this is

the maximal radius of a ‘cloud of points’ around fruit trees (Bracis et al. 2018).

Foraging bats repeatedly traverse the same routes (Tsoar et al. 2011; Toledo et al.

2020; Lourie et al. 2021) and this could artificially inflate the residence time

of positions along these routes. To avoid confusing revisits with residence, we

limited the summation of residence times at each position to the period until the

first departure of 5 minutes or more. Thus, two nearby locations (≤ 50m apart)

each visited for one minute at a time, but separated by an interval of some hours

would not be clustered together as a residence patch. To focus on bats’ night-time

foraging behaviour, we also excluded positions during the day (5 AM – 8 PM), and

at or near the roost-cave (see Fig. 2.8a) to focus on night-time foraging behaviour;

22,910 of 31,012 positions remained (73.9%). Since bats departed and returned

to their roost at different times each night, we also excluded locations with a resi-

dence time> 200minutes (approx. 3.3 hours), as this wasmore likely to represent

daytime roosting than nighttime foraging; of 31,012 smoothed positions, 18,677

remained (60%). From these positions, we calculated that between leaving the

roost to forage, and returning, bats had amean residence time at each position

of 95.64 minutes (SD = 119.23) — this value is still likely to be biased by some

positions at the roost.

To determine the true duration of foraging, we opted for a first-principles ap-

proach and first selected only locations with a residence time > 5minutes, rea-

soning that a flying animal stopping for> 5minutes at a location should plausibly

indicate resource use or another interesting localised behaviour. This step re-

tained 5,736 positions per bat on average (17,208 total), or 72.4%of the nighttime

positions. We then constructed residence patches with a buffer distance of 25m, a

spatial independence limit of 100m, a temporal independence limit of 30minutes,

and rejected patches with fewer than three positions. These values are meant as

examples; users should determine the sensitivity of their results to parameter
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choices. Bats spent 56.95 minutes at foraging sites (SD = 62.20), and were sta-

tionary in particular fruit trees and roosting trees during 83.8% of their foraging

time (Fig. 2.8). Although all three bats roosted at the same cave during the day,

and all their tracks are within the typical foraging area of bats roosting in this

cave (Lourie et al. 2021), they used distinct foraging sites across the area at night

(Fig. 2.8.a). The lack of overlap among individuals in tree use, obtained with the

residence patch algorithm, shows that although co-roosting bats share the same

cave-specific foraging area (Lourie et al. 2021), they often forage on different trees.

Contrasting the actual movement path with the linear path between residence

patches can help reveal details of how animal cognition affects space use (Toledo

et al. 2020). Bats tended to show prolonged residence near known food sources

(fruit trees), but also where no fruit trees were recorded (Fig. 2.8.b, 2.8.c), in line

with previous evidence for their use of non-fruiting trees to rest, to handle and

digest food, and presumably for social interactions (Tsoar et al. 2011).

Future Perspectives on Pre-processing Tracking Data

Recent technical advances in wildlife tracking have already yielded exciting

new insights frommassive high-resolution movement datasets (Tsoar et al. 2011;

Strandburg-Peshkin et al. 2015; Harel et al. 2016; Baktoft et al. 2017; Harel and

Nathan 2018; Oudman et al. 2018; Baktoft et al. 2019; Papageorgiou et al. 2019;

Corl et al. 2020; Toledo et al. 2020; Aspillaga et al. 2021a,b; Beardsworth et al.

2021a,b; Lourie et al. 2021; Vilk et al. 2021), andhigh-throughput animal tracking

is expected to become increasinglymore common in the near future. Tackling the

very large datasets that high-throughput tracking generates requires a different

approach from that used for traditionally smaller volumes of data. We foresee

that movement ecologists will have to adopt ever more practices from fields ac-

customed to dealing with ‘big data’, and that the field will become increasingly

computational (Peng 2011).

Researchers have long used some of these approaches ad hoc, such as ex-

ploratory data analysis on small subsets before applying methods to the full data,

using efficient tools, and basic batch-processing. Yet formally prescribing these

steps can help practitioners avoid pitfalls and implement techniques that make

their analyses quicker andmore reliable. Standardised principles, implemented

a basic pipeline, for approaching data cleaning promote reproducibility across

studies, making comparative inferences more robust. While massive datasets

make reliance on standardised pipelines necessary, the output of such pipeline

should periodically manually double-checked to ensure ‘realistic’ output. The

open-source R package atlastools serves as a starting point for methodological

collaboration amongmovement ecologists, and as a simple working example on
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Figure 2.8: Synthesising animal tracks into residence patches can revealmovement in
relation to landscape features, prior exploration, and other individuals. (a) Linear ap-
proximations of the paths (coloured straight lines) between residence patches (circles) of three
Egyptian fruit bats (Rousettus aegyptiacus), tracked over three nights in the Hula Valley, Israel.
Real bat tracks are are shown as thin lines below the linear approximations, and colours show
bat identity. The grey hexagon represents the roost-cave at Gar Hershom. Black points represent
known fruit trees. Background is shaded by elevation at 30 metre resolution. (b) Spatial represen-
tations of an individual bat’s residence patches (green polygons) can be used to study site-fidelity
by examining overlaps between patches, or to study resource selection by inspecting overlaps
with known resources such as fruit trees (black circles). In addition, the linear approximation of
movement between patches (straight green lines) can be contrasted with the estimated real path
between patches (irregular green lines), for instance, to determine the efficiency of movement
between residence patches. (c) Fine-scale tracks (thin coloured lines), large-scale movement
(thick lines), residence patch polygons, and fruit tree locations show how high-throughput data
can be used to studymovement across scales. Patches and lines are coloured by bat identity.

which researchers may wish to model their own tools. Efficient location error

modelling approaches (Fleming et al. 2020; Aspillaga et al. 2021b)may eventually

make data-cleaning optional. Yet cleaning tracking data even partially before

modelling location error is faster than error-modelling on the full data, and the

removal of large location errorsmay improvemodel fits. Thus we see our pipeline

as complementary to these approaches (Fleming et al. 2014; Fleming et al. 2020).



Finally, we recognise that the diversity and complexity of animal movement

and data collection techniques often requires system-specific, even bespoke, pre-

processing solutions. Though the principles outlined here are readily generalised

to numerous data sources (including terrestrial radio-based reverse-GPS: e.g.

Toledo et al. 2020, andmarine acoustic reverse-GPS: e.g. Aspillaga et al. 2021b;

high-resolution GPS such as Strandburg-Peshkin et al. 2015, and video-tracking:

Rathore et al. 2020), users’ requirements will eventually exceed the particular

tools we provide. For instance, relational databases are the standard for storing

very large datasets, and extending pre-processing pipelines to deal with vari-

ous data sources is relatively simple, as we show in our Supplementary Material.

We see the diversity of animal tracking datasets and studies as an incentive for

more users to be involved in developingmethods for their systems. We offer our

approach to large tracking datasets, and our pipeline and package as a founda-

tion for system-specific tools in the belief that simple, robust concepts are key

tomethods development that balances system-specificity and broad applicability.

-.-

Supplementary Information

forChapter 2

The supplementary material for this chapter is a worked out, step-by-step

guide to using the atlastools package to clean data as described in preceding

sections. Being primarily a tutorial for practitioners — and quite lengthy — it

is not provided here, but may be found online as Supporting Information pub-

lished alongwith themanuscript, Gupte et al. (2022b), “A Guide to Pre-Processing

High-Throughput Animal Tracking Data,” at: https://besjournals.onlinelibrary.wi-

ley.com/doi/10.1111/1365-2656.13610.

-.-
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InterludeA
MappingAnimalMovement inR

PratikR. Gupte

MAPPING AS EXPLORATORY DATA ANALYSIS Mappinganimalmovements

is a key component of exploratory data analysis. It is important to ‘join the

dots’ of animal positions. Large tracking datasets can contain errors that

are only evident to researchers when they look at an approximation of the

animal’s path and ask, “Does the animal move this way?” This map shows

‘jumps’: long, linear segments between points, indicating missing data for

some periods.

Mapping can also reveal interesting behaviours that can only be observed

after significant effort in the field. The ‘looping’ behaviour of AM253 to

water sources is the focus of this map. Seeing this looping behaviour al-

lowed us to focus our study on elephantmovements between visits to water

sources.

MAPPING AS ART Growing up in early 2000s India, I read hard copies of Na-

tional Geographic Magazine, which has long had fantastic graphics. Where

the Animals Go1 was a source of inspiration as well. I built up the image in

layers, used colours that don’t clash, and highlighted the phenomenon of

interest. These approaches chime with the ‘grammar of graphics’ approach

of ggplot, which I used to make this map.

MAPPING IN R R’s great advantage over other languages is visualisaton, specif-

ically the popular ggplot package. ggplot’s emergence as a mainstay of

spatial visualisation is due to its geom_sf function, which can handle sf

spatial objects.

One of ggplot’s advantages is itsmany extensions. Here, I used the ggspatial

and ggtext extension packages to add the scale bars and north arrow, and

to add the text box, respectively.

Plotting rasters is not straightforward in ggplot. There are two main op-

tions: the stars package and its associated geom_stars, or converting a

1 Cheshire, J. and Uberti, O. (2017),Where the Animals Go: TrackingWildlife with Technology in 50
Maps and Graphics (W. W. Norton), 174 pp.
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raster dataset into a dataframe with regular coordinate intervals and using

geom_tile.

Here, I chose the second approach because I’m an infrequent stars user;

since making the map I’ve tried geom_starswhich works just as well, and is

very convenient.

REPRODUCIBILITY IN R I adopted a relatively relaxed understanding of re-

producibility: given the data, the code would be reproducible if it could

produce the map I had entered for this contest. To do this, I set up a contin-

uous integration pipeline using Github Actions (GHA).

Using the usethis package, I created a ‘DESCRIPTION’ file, which is usu-

ally reserved for packages. This file tricks GHA into reading its contents,

especially the dependencies, i.e., the R packages required by the project.

GHA automatically reads the dependencies and installs them, as well as

the programs required by those dependencies. For instance, GDAL (the

Geospatial Data Abstraction Library) is key to nearly all spatial analyses,

and is installed as a requirement of the rgdal package, which is itself key to

sf and raster.

I used the R package renv to make sure that the packages (and the pack-

age versions) I used are available to the pipeline. renv creates a lockfile, a

registry of packages the current project uses, fromwhich those packages

can be installed. Finally, to check whether the entire pipeline works, I

used bookdown to sequentially execute the series of Rmarkdown files. An

obvious alternative is rmarkdown.

GHA runs this pipeline and reportswhether the code ran successfully, and if

not, where it failed (you can see these reports here). GHA runs the pipeline

on Linux, and Windows containers (Mac OS-x is also supported). This

means that though I use Linux, I’m pretty sure that this code works for

Windows users.

THE LIMITS OF REPRODUCIBILITY Reproducibility inevitablybreaksdown

at certain scales in an ecological study. For instance, it would be impossi-

ble to reproduce the primary data collection of the study, such as which

elephants were captured and fitted with transmitters. These data are taken

on faith from the original researchers, highlighting the role of trust in the

scientific community.

In ten years, code in R or another language may no longer be reproducible

due to software and hardware changes, as many researchers found in the

10-year reproducibility challenge. Finally, entire services might become
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unavailable; for example, the raster processing using Google Earth Engine

is dependent on Google maintaining this service.

Researchers then, should be pragmatic about reproducibility. Who is it for

— the researchers themselves, the reviewers of their manuscript, their stu-

dents, their funders? To whom this effort is owed, and by whom, and how

the additional work required can be prevented from becoming a gatekeep-

ingmechanism2;3, are are issues that the ecology and evolution community

will have to address.

2 Finley, K. (2017), “Diversity in Open Source Is EvenWorse Than in Tech Overall,”Wired.
3 Murphy, M. C. et al. (2020), “Open Science, Communal Culture, and Women’s Participation in
the Movement to Improve Science,” Proceedings of the National Academy of Sciences, 117/39:
24154–64.
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About ThisMap

This map and text is adapted from a submission to the Methods in Ecology

and Evolution blog, after my entry won the BES’ Mapping Animal Movements

Contest (2020 – 2021), in the reproducible “R Map” category. The map shows the

movement of 14 female savanna elephants Loxodonta africana tagged in Kruger

National Park, South Africa, with a focus on the elephant AM253. The study that

inspired this map was published as Thaker et al. (2019) “Fine-Scale Tracking of

Ambient Temperature andMovement Reveals Shuttling Behavior of Elephants to

Water.”

I coloured the temperature raster using the scico package’s ‘VikO’ palette. I

tried out a number of palettes from scico, pals (providing the Kovesi palettes),

RColorBrewer, and colorspace packages. I chose a diverging palette to show het-

erogeneity in the thermal landscape, but this approach is not to be recommended

for material that will be printed in grayscale.

Map text is set in two related typefaces designed by the Dutch type foundry

BoldMonday for IBM: Plex Serif — for text on the map— and Plex Sans— for text

in the box. While aiming to be text typefaces, I think both performmuch better

as ‘display’ faces; Plex Serif especially so.

-.-
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What is a bird if not a dinosaur persevering?

– Vinny Thomas, comedian.

Abstract

The flight surfaces of bird wings require regular renewal through a process

called moult — shedding worn out feathers and growing fresh ones. Moult

presents birdswith the dilemmaof needingmore resources for feather growth just

when their flight capacity is reduced due to feather loss, making themmore vul-

nerable to predation. We combined mechanistic and experimental approaches to

present a first quantification of the direct effects of wing moult on the movement

and habitat selection of four non-migratory passerine species. We followed the

movement of moulting birds using a high-throughput tracking system. Taking a

viewshed ecology approach, we examined how birds used areas sheltered from

observation by potential predators. We found that species’ moult rate determined

whether they adjusted their movement to their wing condition. Among species

that adapted movement to moult rate, natural moult led to increased movement

betweenhabitat patches, whereas artificial feather removal led to shorter between-

patchmovements. Across moult rates, birds preferred lower visibility areas that

aremore sheltered fromvisual predators. Our study revealed that birds’ fine-scale

adaptive movement decisions are intertwined with their evolved physiological

strategies, and they can adopt the spatial perspective of their predators at land-

scape scales, pre-emptively avoiding areas where they could be observed. Overall,

we show how combining experimental and tracking approaches with mechanis-

tic, biologically-grounded estimates of landscape attributes allows cross-species

comparisons of movement strategies in response to moult dynamics.
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Introduction

B
IRDS are unique in moving mostly by powered flight on feathered wings.

Feathers, unlike animal hair and claws, are dead proteinaceous structures,

which cannot be renewed continuously as they suffer wear and tear (Rayner

1988; Jenni andWinkler 1989). As feathers mature, wing condition and conse-

quently flight capacity gradually decreases (Lindström et al. 1994; Hedenström

and Sunada 1999; Hedenström 2003). Moult — the shedding of old, worn-out

feathers, and their replacement with freshly grown ones— is thus a key process

in avian ecology (Ginn andMelville 1983; Rayner 1988). During wingmoult, as

one or more feathers are lost and new ones grow in their place, the flight surfaces

of bird wings become smaller. The reduction in flight surface area during moult

can be measured using a robust-cross species index of the size of the (temporary)

wing gap (Lind and Jakobsson 2001; Kiat et al. 2016). Wider gaps lead to larger

reductions in flight surface area, power output, and flight capacity and efficiency

in captive birds (Tucker 1991; Swaddle et al. 1996; Swaddle andWitter 1997; Lind

2001; Lind and Jakobsson 2001; Williams and Swaddle 2003; Bowlin et al. 2009).

In addition to these indirect costs, wingmoult is among themost energetically

demanding phases of a bird’s annual cycle, as regrowing large flight feathers

requires substantial resources (Lindström et al. 1993; Newton 2009; Kiat and

Sapir 2017). Despite these mechanistic links betweenmoult andmovement, our

understanding of moult’s influence on birds’ movement strategies and habitat

selection is poor.

The direct influence of wing moult on the movement and habitat selection of

birds has primarily been examined in a few small-scale, disconnected studies

(Bell 1970; Haukioja 1971; Green and Summers 1975; Madsen andMortensen

1987; Francis et al. 1991; Fox et al. 1998). Moving less, as some northerly species

of finches and buntings do (Bell 1970; Haukioja 1971; Green and Summers 1975;

Francis et al. 1991), could save energy required to regrow feathers. Avoiding

predation risk during moult by sheltering in vegetation and rough terrain (Bell

1970; Haukioja 1971; Green and Summers 1975; Francis et al. 1991), or near

water-bodies as geese andducks do (Madsen andMortensen1987; Fox et al. 1998),

could also lead to reducedmovement during moult. Moult often coincides with

migratory periods (Kiat et al. 2019), making it difficult to separate the effects of

migration-related energetic requirements (Alerstam and Lindström 1990; Wikel-

ski et al. 2003; Horvitz et al. 2014), such as preferences for high-quality resources

(Madsen andMortensen 1987; Fox et al. 1998), frommoult-related considerations

on habitat selection. Simultaneously,moult is influenced by bird physiology, with

large-bodied species molting faster (Jenni et al. 2020; Kiat and Izhaki 2021), and

also by birds’ evolvedmovement strategies, as wide-ranging and aerial foraging
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species (e.g., swifts and swallows) moult more slowly to maintain movement

capacity (Kiat et al. 2016).

The direct effects of moult could be robustly studied with a cross-species com-

parison of unrelated, non-migratory species that are not constrained by the short

time available for moult in northern temperate regions (Ginn andMelville 1983;

Jenni et al. 2020). Cross-species studies of movement and habitat selection in

molting birds could benefit from dramatic advances in the high-throughput po-

sition tracking of small species (Toledo et al. 2020; Nathan et al. 2022). Birds,

among other animals, can take the spatial perspective of visual predators, and

avoid risky, exposed areas in favour of sheltered ones (Hampton 1994; Emery

2000; Krams 2001; Davidson and Clayton 2016; Krams et al. 2020). Shelter is

often only proxied by correlated variables, such as vegetation growth (Pettorelli

et al. 2011). Adopting a mechanistic, viewshed ecology approach (Olsoy et al.

2015; Aben et al. 2018; 2021) in habitat selection analyses could directly account

for birds’ visibility to potential predators (Olsoy et al. 2015; Aben et al. 2018;

2021).

We explore the direct effects of wingmoult on themovement of birds, focus-

ing on four sympatric, non-migratory species: barn swallows (Hirundo rustica),

white-spectacled bulbuls (Pycnonotus xanthopygos), house sparrows (Passer do-

mesticus), and clamorous reed-warblers (Acrocephalus stentoreus). Scoring the

moult-related wing gap size of naturally molting birds (Lind and Jakobsson 2001;

Kiat et al. 2016), we manipulated a subset of molting individuals by trimming

a number of flight feathers. We tracked birds during a 4-month period using

the high-throughput ATLAS system, which brings unprecedented temporal and

spatial resolution to small bird tracking (Toledo et al. 2014; Weiser et al. 2016;

Toledo et al. 2020; Nathan et al. 2022; Beardsworth et al. In press). We examined

(i) how the size of the moult-related wing gap affected bird movement, and (ii)

how the wing gap size influenced selection for more sheltered habitats. Overall,

we show how birds’ movement decisions, influenced by their immediate physio-

logical condition, scale up to affect their space use, and how individuals’ adaptive

behavioral strategies have feedbacks with their evolutionary ecology.

Examining theMovement ofMoulting Birds

We studied bird moult and movement in the Hula Valley of northern Israel

(33.10°N, 35.60°E), which includes reconstructed wetlands and reedbeds as well

as agricultural areas (crops, plantations and fishponds; see Supplementary Infor-

mation).
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Bird Capture,WingMoult Scoring and ExperimentalManipulation

We captured 86 individuals of four species in 2016: 16 barn swallows, 19 white-

spectacledbulbuls, 35house sparrows, and16clamorous reed-warblers, forwhich

we alsomeasured the wing gap index. All individuals were trapped after breeding

was completed and before the molting season commenced, between June and

October 2016.

We described the state of each primary feather on a scale of 0 to 5 using the

primary score (PS) method (Ginn and Melville 1983). Both PS = 0 and PS = 5

indicate a fully mature feather, and hence no gap in the wing. A PS value between

1 and 4 indicates feathers in increasing stages of growth, with PS = 1 representing

a large gap left by a recently molted feather. This method allows a cross-species

estimate of the size of the moult-related gap in the wing, and is also strongly

and negatively correlated with moult rate and duration (Rohwer et al. 2009). We

scored the wing gap size due to any single feather molting as the inverse value

of PS for each of the wing’s nine primary feathers (P1 – P9; counted outward)

such that when PS = 1, wing gap size = 4, and when PS = 2, wing gap size = 3, etc.

However, for PS = 0, wing gap size is also 0 because there is no gap in both the

PS = 0 and PS = 5 stages, as either an old, mature feather, or a new, freshly grown

feather is present. To compare moult-related wing gap sizes across individual

birds, we summed the wing gap size scores across all nine primary flight feathers,

for each individual, into a single wing gap index (Kiat et al. 2016). This index is

independent of the size of individual birds and their morphology, controls for the

stage of wing feather moult, and allows for reliable cross-species comparisons

(Bensch and Grahn 1993; Kiat et al. 2016).

We experimentally manipulated 29 individuals across species (bulbuls = 6,

sparrows = 14, reed-warblers = 2, swallows = 7), and removed one to three pri-

maries; the exact number was determined randomly for each bird. We varied

this number to produce variation in the possible effect of wing gap size, and the

manipulation was symmetrical, i.e., the same feather was removed in both wings.

Primaries were removed by cutting the feather near its base, in addition to the

primaries missing as part of natural moult; this procedure simulates an enlarge-

ment of the moult-related wing gap. Cutting the feather rather than tearing it out

from the base, which is still innervated (Jenni et al. 2020), avoided excess trauma

which could impact birds’ behaviour, and allowed us to examine the effect of only

the wing gap size onmovement and habitat selection. For these experimentally

manipulated birds, we calculated the wing gap size after the procedure described

here. Bird capture and handling, the experimental manipulation procedure, and

tagging for position tracking (see below) were conducted under a permit from the

Israel Nature and Parks Authority (NPA permit 2016/41402) and from the ethics

committee of the Hebrew University of Jerusalem, Israel (NS-16-14801-2).
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Forecasting Daily Changes in theWingGap Size Index

The size of the moult-related wing gap decreases slowly and constantly as

feathers regrow, yet as amature feather is shed, thewinggap sizemayalso increase

in gradual jumps. Over our tracking period of about 7 days per individual (see

below), this is expected to represent small changes in thewing surface area, which

could further influence movement decisions. These changes in wing condition

should be accounted for when relating movement characteristics to wing gap

size. To do this, we calculated for each species the mean daily progress in the

moult score, based on a sample of individuals documented twice during themoult

process (bulbul = 0.45 ± 0.15, n = 17; sparrow = 0.40 ± 0.25, n = 10; reed-warbler

= 0.69 ± 0.34, n = 24; swallow = 0.34 ± 0.18, n = 22). Then, we estimated for each

bird included in the study the expected daily change based on the measurement

wemade at the time of tagging (see Supplementary Information).

Tracking BirdMovement Using ATLAS

We tracked the movement of individual birds using ATLAS (Advanced Track-

ing and Localization of Animals in real-life Systems), a state-of-the-art high-

throughput radio-telemetry system capable of tracking dozens of individuals

at intervals as low as 4 seconds (Toledo et al. 2014; Weiser et al. 2016; Toledo

et al. 2020; Nathan et al. 2022). We glued ATLAS tags (0.9 – 1.6 g, depending

on species) to birds’ dorsal feathers after capture, and then released them (tag

weights as percent of body mass: bulbuls = 3.85% ± 0.21%; sparrows = 4.21 ±
0.13; reed-warblers = 4.75% ± 0.19%; swallows = 4.9% ± 0.13%). Tags automat-

ically drop off as these feathers are molted. Each individual was tracked for an

average of 8.23 ± 3.24 days (bulbul = 9.8 ± 10.1 days; sparrow = 12.0 ± 13.4 days;

reed-warbler = 5.9± 2.1 days; swallow = 5.1± 14.8 days). We collected 4.3million

position estimates overall, with 7,276 positions per individual per day, for an

effective tracking interval of 5.05 ± 1.85 positions perminute on average (bulbuls

= 6.14 ± 3.93; sparrows = 5.98 ± 5.57; reed warblers = 5.80 ± 3.16; swallows =

2.28± 1.42). Since wewere interested in exploringmovement patterns, and these

species are diurnally active, we removed all nighttime positions, leading to an

approximate halving of the total dataset.

Processing Tracking Data

ATLAS conservatively filters out location estimates that are clearly wrong (e.g.,

too far from the study area), letting users inspect most location estimates, which

comewith severalmeasures of quality, and decidewhether theywant to retain the

estimates or not. For this study, we aggressively filtered out location estimates,
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removing estimates for which we had indications that ATLAS failed to find a high-

quality estimate (Gupte et al. 2022b) (see log_preprocessing.log in the analysis

code). We began data cleaning by removing locations near a so-called attractor po-

sition (at (257000.0,780000.0), Israeli grid; see file log_preprocessing.log); these

are locations for which the positioning system had defaulted to a (wrong) esti-

mate. We identified and removed other attractor positions by removing positions

sharing the exact same common coordinate pair. Since coordinates are resolved

down to double-precision, it is very unlikely for two location estimates to have

the same coordinate pair, and this rather indicates an error in location estimation.

Each individual’s track was pre-processed separately.

We first (i) filtered the data for large-scale errors by removing positions with

a system-generated positioning-error estimate (SD) > 20m, and then (ii) split

each individual’s tracking data by calendar date, removing days with < 500 po-

sitions. Finally, we (iii) filtered the data for unrealistic movements, removing

positions with both speeds > 20m/s and a turning angle >10°. We deliberately

used larger thresholds than these species’ maximum speeds to avoid removing

valid, high-speedmovements (Gupte et al. 2022b). Finally, we (iv) accounted for

small-scale errors — noise around the true positions — by applying a median

smooth with a moving window 𝐾 = 7. After excluding night time data and all

other data filtering and smoothing, we analyzed 1.1 million locations from 86

individuals, keeping high per-minute sampling rate for all species (bulbuls = 4.85

± 3.3, sparrows = 2.73 ± 3.0, reed-warblers = 2.09 ± 1.44, swallows = 2.07 ± 1.14).

Compared with current technologies for tracking small birds (< 50g) — primarily

radio triangulation and geolocators, which have low temporal (a few fixes per

hour or day) and spatial resolution (error margins up to 200 km) (Bridge et al.

2013) — ATLAS data represent an unprecedented sampling rate, with GPS-level

accuracy (Beardsworth et al. In press).

Quantifying Large-scaleMovements

Weinvestigated the large-scale space-useofbulbuls, sparrows, and reed-warblers

by summarising their processed movement paths into daily sequences of ‘res-

idence patches’ using the atlastools package developed specifically with high-

throughput ATLAS tracking data in mind (Gupte et al. 2022b). The residence

patch algorithm uses simple distance and duration thresholds, chosen based on

themovement ecology of the tracked species, to efficiently and rapidly cluster-

segment individuals’ non-travelling positions (Gupte et al. 2022b). We applied

this algorithm to the date-specific tracks of each individual, considering consecu-

tive positions less than 25m and 30minutes apart to be part of the same cluster.

We joined clusters (with at least 9 positions) less than 100m and 30minutes apart

together for bulbuls and sparrows, and less than 25m and 30minutes apart for
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reed warblers, which typically fly only short distances (Kiat et al. 2016). Doing so,

we obtained 4,373 residence patches overall and extracted environmental covari-

ates (NDVI and visibility index; see below) for the positions clustered into each

patch. We handled swallows differently, as these are highly aerial birds whose

movement is not easily clustered into residence patches. Instead, and because

the relatively higher-flying swallows are more accurately tracked by ATLAS, we

simply calculated the total distances moved along daily tracks from the cleaned,

processed data.

Visibility Analysis to Quantify ShelteredHabitats

Many animals can gauge the risk posed by predators by estimating a predator’s

fieldof view (‘spatial perspective taking’) (Emery2000; Bruceet al. 2003; Davidson

and Clayton 2016), and select for sheltered locations outside of a predator’s view

(Hampton 1994; Krams 2001; Watve et al. 2002). To assess the field of view of

a hypothetical predator, and thus the estimated riskiness of the landscape, we

took a viewshed ecology approach to determine how visible an area was from

surrounding locations (Aben et al. 2018; 2021).

We first obtained a 50cm canopy height model (CHM) (Aben et al. 2021) of the

majority of our study area (courtesy of the Survey of Israel). For each cell of the

CHM, we calculated a visibility index, which is the proportion of surrounding

cells fromwhich the focal cell is visible, given that lines of sight can be blocked by

intervening structures (also called cumulative viewshed analysis, or a ‘fearscape’)

(Olsoy et al. 2015). Open areas, such as agricultural fields or water bodies, are

likely to be visible from all directions and have a visibility score ≈ 1.0. In contrast,

locations inside woodland or reedbeds are likely to be hidden from view, with a

lower visibility index (see Supplementary Information).

Importantly, the visibility index depends upon the hypothetical observer’s

height above surface level; observers higher upmay be able to see locations that

are obstructed from a terrestrial viewpoint. We parameterised our visibility index

calculations based on the hunting flight altitude of a raptor that commonly preys

on small birds, the Eurasian sparrowhawk (Accipiter nisus). Sparrowhawks and

other bird-preying raptors hunt by surprising their prey via low-level flight, as

hovering or high-flying raptors are conspicuous and can be easily detected (Krams

2001; Krams et al. 2020). In line with experimental and observational work, we

assumed an observer height of 1.5m above surfaces (tree canopy, fields, or other)

(Seress et al. 2011; Krams et al. 2020), and an observer visual range of 50m. We

used the ‘Visibility Analysis’ plugin v1.2 for QGIS v3.20 to calculate visibility

scores over the study area (Cuckovic 2016).
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Drawing Alternative Residence Patches to ExamineHabitat Selection

In our landscape, it is mostly wooded areas that offer shelter from observation

by aerial predators (see Supplementary Information). We examined the relative

importance of the provisioning effects of vegetation (proxied by NDVI) (Pettorelli

et al. 2011), and its sheltering effects (section F above), on birds’ movement deci-

sions at the patch scale. To do this, we combined our residence patch approach

for bulbuls, sparrows, and reed warblers with a step-selection approach (Thurfjell

et al. 2014; Avgar et al. 2016) using the amt package (Signer et al. 2019). While

barn swallows could potentially make use of sheltering vegetation by flying very

low (Warrick et al. 2016), we could not detect their altitude above the ground— a

key component of shelter — and so did not include them in this analysis.

We first converted each individual’s daily sequence of residence patches into

steps, with each patch 𝑖 as the starting point, and the following patch 𝑖 + 1 as
the end of the step. Then, for each such real step, we drew 9 alternative steps

that the individual could have taken from patch 𝑖, and considered the end coordi-
nates of these alternative steps to represent themedian coordinates of a potential

residence patch. The distances of these movements were drawn from a gamma

distribution fitted to each individual’s movements between patches, and turning

angles were drawn from a VonMises distributions fitted to the observed turning

angles (Signer et al. 2019). For each alternative patch withmedian coordinates

(𝑋alt, 𝑌alt), we drew 15 coordinate pairs from a normal distribution centred on

(𝑋alt, 𝑌alt), with a standard deviation of 20m.

To control for the resource-provisioning effect of vegetation, we also obtained

the normalised difference vegetation index (NDVI) as a metric of vegetation

growth (Pettorelli et al. 2011) across our study area, using Copernicus Sentinel-2

MultiSpectral Instrument, Level-1C data (10m resolution; June – October 2016).

We sampled the NDVI and visibility index at real and potential patch coordinates,

and calculated averages per patch. With between-patch movements as steps,

we performed species- andmoult-status specific step-selection analysis (SSA) to

determine how these predictors affected habitat selection (Avgar et al. 2016: see

Supplementary Information). The time intervals between patches were not fixed,

but step lengths were not dependent on step duration, and so we implemented a

simple SSA.
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Figure 3.1: Naturallymolting bulbuls and sparrows, but not reed-warblers,move farther
between residence patches during naturalmoult than following experimental feather
manipulation. White-spectacled bulbuls (Pycnonotus xanthopygos) and house sparrows (Passer
domesticus) moved 251% and 150% as far between areas of prolonged use (‘residence patches’)
when molting, compared to non-molting individuals (see text for statistics). However, when
bulbuls’ and sparrows’ wings were heavily compromised by experimental manipulation (wing
gap index ≥ 12), both species made shorter movements between residence patches. In contrast,
clamorous reed-warblers (Acrocephalus stentoreus) did not show a significant difference in large-
scale movements with increasing wing gap index, possibly because they are already restricted to
small patches of reedbeds.

Effect ofWingMoult on BirdMovement andHabitat

Selection

Moult-relatedwing gap size

Of the four specieswe studied, bulbuls and sparrows are relativelywide-ranging

birds, reed-warblers are strongly range restricted to patchy reedbeds, and swal-

lows are very wide-ranging, largely aerial foragers. Bulbuls and sparrowsmoult

more slowly than reed-warblers, but more rapidly than swallows. Thus reed-

warblers have the largest moult-related wing gaps, swallows the smallest, while

bulbuls and sparrows are intermediate between them (wing gap index,mean± SD:

swallows = 4.3 ± 0.95, bulbuls = 4.95 ± 1.37, sparrows = 5.9 ± 2.1, reed warblers =

9.5 ± 1.38). All non-molting birds had a wing gap index score of zero.

Moult-relatedWing Gap Size and Large-scaleMovements

For bulbuls, sparrows, and reed-warblers, we quantified large-scalemovements

as both the displacements between areas of prolonged residence, called ‘residence
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Figure3.2:Patch-switchingbehaviour isaffectedbywinggapsize inbulbulsandsparrows,
butnot in reed-warblers. Bulbuls switched between areas of prolonged use (‘residence patches’)
more frequently whenmolting naturally than when notmolting; however, bulbuls whose feathers
had been artificially cut (‘manipulated’) switched less frequently between patches. Molting
sparrows switched residence patches less frequently with increasing wing gap index; naturally
molting birds switched less than non-molting ones, and manipulated birds least of all. Reed-
warblers did not show a significant difference in patch switching with increasing wing gap index,
possibly because they are already restricted to small patches of reedbeds.

patches’ (Gupte et al. 2022b), as well as the frequency of these displacements.

Since swallows constantlyflywhile foraging, we chose to quantify their large-scale

movement by simply calculating the total distance moved, adjusting for the daily

duration of daytime tracking. We related total large-scalemovements (controlling

for daily, daytime tracking duration)withwing gap size using generalised additive

models (GAM). We fit one GAM for bulbuls, sparrows, and reed-warblers (species

included as both fixed and random effect), and a separate GAM for swallows (see

Methods; see Supplementary Information for model specification).

Distance BetweenResidence Patches

We found that bulbuls and sparrows, but not reed-warblers, adjusted their

daytime large-scale movements between residence patches to their wing gap size

(Fig. 3.1; GAM t-value = 2.13, p = 0.034; Supplementary Information Table 3.1).

Comparedwith non-molting individuals (wing gap = 0), naturallymolting bulbuls

with moderately large moult-related gaps (3 <wing gap ≤ 10) actually moved 2.5

times as far per hour between residencepatches (GAMestimate𝐹=4.734, p=0.01;
distancebetweenpatches: non-molting=54.11m,molting=135.89m). Similarly,

naturally molting sparrowsmoved 1.5 times as far per hour between residence

patches (GAM estimate 𝐹 = 11.58, p = 0.00002; distance between patches: non-
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molting = 208 m, molting = 307 m). This is consistent with the idea that wing

moult is an energetically demanding period that requires actively seeking out

high-quality food sources (Madsen andMortensen 1987; Fox et al. 1998).

Reed-warblers and swallows, which represent very rapid and very slowmoult

rates, respectively, showed no statistically significant change in large-scale move-

ment with increasing size of the moult-related wing gap (Fig. 3.1: reed-warblers).

Rapidly-molting reed-warblersmovedsimilardistancesbetween residencepatches

whenmolting or non-molting (GAM estimate 𝐹 = 0.055, p = 0.815; Fig. 3.1). This

is presumably because reed-warblers do not move between distant patches even

when not molting (mean distance between residence patches: non-molting =

27.20 m, molting = 29.09 m, manipulated = 8.49 m) (Kiat et al. 2016). Slow-

molting swallows also moved similar (large) distances per hour when they were

either non-molting, molting, or artificiallymanipulated (GAM estimate 𝐹 = 0.129,
p = 0.723). Swallows’ slow moult rate likely represents an adaptation to their

aerial foraging habit, allowing them to maintain flight performance across moult

stages (non-molting = 3.48 ± 1.36 km, molting = 3.36 ± 1.17 km, manipulated =

3.64 ± 1.96 km).

Effect of ArtificialManipulation

Our experimental manipulation involved removal of one to three primaries, in

addition to the primaries missing as part of natural moult (seeMethods). Wing

gap index scores after artificial manipulation showed differences among species

corresponding to their natural moult rate, manipulated reed warblers had larger

wing gaps thanmanipulated swallows, bulbuls, or sparrows (swallows = 10.11 ±
2.5, bulbuls = 13.5 ± 2.35, sparrows = 12.56 ± 3.5, reed-warblers = 17.8 ± 1.1).

Bulbuls and sparrows whose flight feathers had been removed bymanipulation

(12 <wing gap < 20) moved shorter distances than naturally molting birds (bul-

buls: 68% less, 43m; sparrows: 16.7% less, 256m). These observations are in line

with the direct effects of severely reduced flight capacity and allocating energy

reserves to feather regrowth rather than movement, and an indirect effect of

risk-avoidance during a vulnerable period.

Frequency of Patch Switching

We found that in addition to affecting the distance moved between residence

patches, the wing gap resulting from natural moult or manipulation also affected

the frequencyof patch switching inbulbuls and sparrows, but not in reed-warblers

(Fig. 3.2). Naturallymoltingbulbulsmovedmoreoftenbetween residencepatches

than non-molting and artifically manipulated birds (GAM estimate 𝐹 = 7.45, p
< 0.001; see also Supplementary Information Table 3.2). However, naturally
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Figure 3.3: Naturallymolting bulbuls and reed-warblers, but not sparrows, use residence
patches for shorter durations thannon-molting and artificiallymanipulatedbirds. Bul-
buls and reed-warblers use contiguous areas for shorter durationswhenmolting, than eitherwhen
not molting or when some of their flight feathers have been removed by artificial manipulation.
However, sparrows did not show an effect of wing condition on their use of residence patches.
The visibility of a patch to low-flying predators reduced the duration for which it was used, but
patch vegetation productivity (NDVI) had no effect.

molting sparrows switched between residence patches as often as non-molting

birds, but artificiallymanipulated sparrows switched patches less frequently than

molting birds (GAM estimate 𝐹 = 3.515, p = 0.024; Fig. 3.2). Reed-warblers did
not show a change in patch-switching frequency in relation towing gap size (GAM

estimate 𝐹 = 1.04, p = 0.31).

Moult-relatedWing Gap size and Patch Occupancy

Weexaminedwhether the time that bird spent in residencepatcheswas affected

by theirwing gap size, with the expectation— following the results formovements

between patches — that molting birds would spend less time in patches than

non-molting andmanipulated birds (see Supplementary Information for model

specification). This was indeed the case for both bulbuls and reed-warblers, for

which the mean patch duration for molting birds was only about half of that for

non-molting andmanipulated birds (Fig. 3.3; GAM estimates: bulbuls, 𝐹 = 18.86,

p< 0.001; reedwarblers, 𝐹 = 12.854, p< 0.001). However, we found that sparrows

had similar patch durations across different wing gap sizes (GAM estimate 𝐹 =
0.023, p = 0.878; Supplementary Information Table 3.3).

We expected two environmental attributes — vegetation productivity (NDVI),

and visibility to predators — to also affect patch durations. To quantify patch

visibility, we calculated the visibility index across our study area (Olsoy et al.
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2015; Aben et al. 2018; 2021). The visibility index represents whether a location

can be observed from surrounding areas, for example by a commonly occurring

predator, the Eurasian Sparrowhawk (Accipiter nisus; seeMethods). Areas with

taller vegetation such as orchards, and built-up areas such as settlements have

lower visibility indices and are more sheltered (see Supplementary Information),

as predators’ lines of sight are obstructed by intervening objects (Olsoy et al. 2015).

We found that NDVI did not appear to influence patch duration (GAM parametric

estimate = 0.056, p = 0.86). However, patch durations increased with reduced

patch visibility (GAM parametric estimate = -0.70, p = 0.004).

Birds Occupy Sheltered Areas acrossMoult Rates

Finding that patch visibility influenced patch durations, we examined whether

birds’ moult-related wing gaps directly influenced their use of sheltered areas

(except swallows, which are aerial foragers). First, fitting a GAM with species-

specific smooths for bulbuls, sparrows, and reed-warblers (seeMethods), we found

that only reed-warblers had slightly more sheltered patches with larger wing gaps

(GAM estimate 𝐹 = 9.30, p = 0.002; Fig. 3.4; visibility: non-molting = 0.33 ± 0.17,

molting = 0.31± 0.19,manipulated = 0.21± 0.06), potentially because their rapid

moult rate severely reduces flight capacity andmakes increased shelter necessary.

This suggests that bulbuls and sparrows, with intermediate moult rates, occupy

sheltered areas of similar (low) visibility regardless of the size of their wing gap

(visibility: bulbuls = 0.39 ± 0.18; sparrows = 0.47 ± 0.19; see Supplementary

Information Table 3.4).

Wewent one step further, andused a step-selection approach to sample patches

to which individuals could have moved, and estimated birds’ relative preference

for visibility and NDVI whenmakingmovement decisions (seeMethods) (Avgar

et al. 2016; Aben et al. 2021). Fitting separate step-selection functions for each

species and eachbroadmoult group (non-molting,molting, andmanipulated), we

found that across moult group, all three species preferred low-visibility sheltered

sites over higher visibility ones (Fig. 3.4; Supplementary Information Table S5).

Furthermore, NDVI did not signficantly affect birds’ movement decisions at the

patch scale (see Supplementary Information Table S1). This is consistent with

the idea that birds of our study species mostly avoid open agricultural fields,

where theymight be exposed to potential predators, even though fields are highly

productive.

Interpreting the Effect ofWingMoult on BirdMovement

Our study is among the first to quantify how the compromised wing surface as-

sociated withmoult directly affects movement and habitat selection in wild birds.
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Our high-throughput tracking system enabled tracking small birds at temporal

(several times per minute) and spatial resolutions (a fewmetres) far surpassing

current technologies for tracking such small birds (< 50g)—mainly through radio

triangulation and geolocators, that have low temporal (a few fixes per hour or

day, respectively) and spatial resolution (error margins up to 200 km) (Bridge

et al. 2013). Focusing on resident birds outside their breeding season, rather

thanmigratory or breeding ones, enables at least some control on confounding

factors associated with seasonal physiological changes, and the confounding

effect of migration- or breeding-related energy and time requirements (Alerstam

and Lindström 1990; Wikelski et al. 2003; Horvitz et al. 2014). Our study also

extends the geographic range of the field to an understudied region, and to two

less-studied species.

Both rapidlymoltingclamorous reed-warblers, andslow-moltingbarn swallows,

did not adjust their large-scalemovements to theirwing condition. Reed-warblers

move very short distances (< 25m) in low-visibility areas, and can afford rapid,

resource-intensive feather growth (Lindström et al. 1993; Newton 2009; Kiat

and Sapir 2017), as this does not compromise their ability to move scansorially

through their dense reedbed habitat, which also offers shelter from visual preda-

tors. At the other extreme, barn swallows that forage exclusively while flying have

evolved a very slowmoult rate (Kiat et al. 2016), which likely forestalls significant

direct aerodynamic effects of feather loss on flight capacity. Our work shows how

birds’ evolved moult strategies — which are themselves influenced by movement

strategies (Kiat et al. 2016) — are interlinked with the direct, short-term effects of

moult onmovement.

We also found that birds with intermediate moult rates — white-spectacled

bulbuls and house sparrows — adapt their movement strategies to their wing

morphology. Surprisingly, these species moved more when naturally molting

than non-molting. Birds can compensate for lower wing power output by growing

their pectoralmuscles, and thismay allow them tomaintain flight capacity during

the moult, enabling increased movement to find resources for feather growth

(Chai 1997; Swaddle andWitter 1997). Unsurprisingly, increased movements be-

tween putative foraging patches, and an increased frequency of suchmovements,

together translate into a shorter occupancy duration in each patch. While this

movement strategy conformswith optimal foraging theory— rapid abandonment

of patches to maximise prey intake (Charnov 1976) — it does not appear that

vegetation productivity influences patch use.

When increasedmovement for high quality resources (Charnov 1976) cannot

compensate for the costs of inefficient flight and feather growth, moving less

overall to conserve energy may be the optimal strategy until new flight feathers

develop. This latter strategy should be expected when the wing gap size is in-
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creased beyond the extent of natural moult, as found in our study. The shorter

between-patch movements of artificially manipulated sparrows and bulbuls with

especially large wing gaps (wing gap index > 12), compared with natural moult,

thus fit within this hypothesis. Importantly, our relatively non-invasive method

only increases the wing’s feather gap size while avoiding wing injury, suggesting

that the reduction in flight is actually due to considerations of flight efficiency,

rather than trauma.

We have for the first time applied the idea of the cumulative viewshed to di-

rectly assess the availability of shelter from visual predators, along birds’ real

and potential movement paths (Olsoy et al. 2015). Birds, like other animals, are

capable of taking the spatial perspective of other individuals (Emery 2000; Krams

2001; Watve et al. 2002; Davidson and Clayton 2016), i.e., whether a location

would be visible to another observer, such as a predator (Watve et al. 2002; Olsoy

et al. 2015). Previous work has focused on demonstrating spatial perspective

taking — and resulting habitat selection — at small spatial scales of a few me-

tres, and typically with a direct predator cue (Krams 2001; Watve et al. 2002).

Our work is the first to combine the spatial perspective-taking concept with the

emerging framework of animal viewshed ecology at landscape scales (Aben et

al. 2018; 2021). Our findings suggest that birds can estimate the visibility (and

hence riskiness) of an area frommultiple perspectives, and that they can do so at

relatively large, landscape scales (many dozens of metres). Our results also show

how themodelling of animalmovement decisions should incorporate individuals’

estimates of what other animals can see (Hampton 1994; Emery 2000). Visibility

analysis provides a simple, mechanistic way to incorporate animals’ potential

assessments of landscape risk into habitat selection models. This could help

move away from purely correlative studies of animal habitat selection, which

usually rely on predictors with very broad applicability (Pettorelli et al. 2011).

All three species studied strongly preferred sheltered, low-visibility habitats

over more open sites, even when the available sites had similar vegetation pro-

ductivity. Predators are unlikely to always be in the vicinity of a specific location,

or indeed to always be visible. This instead points to an avoidance of open agricul-

tural areas where predation risk is highest, showing the immediate, small-scale

effects of a ‘fearscape’ (Olsoy et al. 2015) on animal movement. This pre-emptive

cautionmay explain why wing condition, which should be expected to determine

vulnerability to predation, did not lead to more sheltered residence patches in

two of three relevant species. Furthermore, our findings suggest that avoidance

of high-visibility areas may be an overlooked, yet potentially broadly applica-

ble mechanism by which agricultural ‘green deserts’ exclude avian biodiversity.

An unwillingness to break cover from sheltered areas, andmove through high-

visibility habitat, may explain how individual movement decisions can scale up
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to restrict animal space use, from short home-range moves to longer dispersal

events (Schlägel et al. 2020). Overall, our work provides a template for combining

simple experimental methods with technological advances in tracking technol-

ogy, and with a mechanistic approach to landscape ecology, in animal movement

research.

-.-



Supplementary Information

forChapter 3

Individuals' Wing Gap Sizes across the Study Period

Figure 3.5: Forecast daily change inwing gap index, per individual. The size of the molt-
related wing gap decreases slowly and constantly as feathers regrow, but the wing gap size may
also increase in gradual jumps as a feather is shed during molt. We calculated the mean daily
progress in the molt score, based on a sample of individuals of each species documented twice
during the molt process. For each bird included in the study, we calculated the expected daily
change in molt-related wing gap size based on the measurement wemade at the time of tagging
(day 1 in each panel).

81
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Vegetation, Visibility, and LandUse across the Study

Area

Land cover

Wemanually constructed spatial polygons of the land-cover types in our study

area, based on aerial imagery and field experience (see Fig. 3.6A). We categorised

the study area into five main land-cover classes: settlements and built-up ar-

eas, open or agricultural areas, naturally occurring reedbeds, areas with trees

(including orchards), and water (including canals and streams).

Vegetation Productivity

We obtained a standard measure of vegetation productivity, the normalised

difference vegetation index (NDVI), which is widely used in animal ecology (Pet-

torelli et al. 2011). We did this by accessing the European Space Agency Coper-

nicus mission’s Sentinel 2 imagery from themulti-spectral instrument, at a res-

olution of 10m. We accessed data from the Level-1C collection, which covered

the study area during the period in which we were interested (June – October,

2016), rather than using the somewhat better Level-2A data, which covers the

study area only from 2017 onwards. We calculated NDVI using the standard

formula NDVI = (NIR − Red)/(NIR + Red), whereNIR is the near infra-red band,

and Red is the red band. We used Sentinel band 8 (near infra-red; 835.1 nm or

833 nm) and band 4 (red; 664.5 nm or 665 nm) to calculate NDVI, with minor

differences in the band wavelengths due to small differences between the two

Sentinel-2 satellites, S2A and S2B. We performed the full pipeline of NDVI cal-

culation on Google Earth Engine (Gorelick et al. 2017), using the Python API

(http://code.google.com/p/earthengine-api/) and the geemap library (Wu 2020).

NDVI across our study area varied between small negative values (indicating

water), 0 (usually indicating bare ground), and large positive values up to 0.7

(indicating strong vegetation growth; see Fig. 3.6B). The largest NDVI values

were associated with some agricultural fields, as well as with orchards with grow-

ing trees, and with natural reedbeds (compare see Fig. 3.6A – B; see correlation

below).

Visibility Index

We obtained a canopy height model (CHM) of the majority of our study area

from the Survey of Israel at 50cm resolution. We could not access CHM data for

some peripheral areas as this is a border region. In contrast to the more conven-

tional elevational model, CHMs can pick up fine-scale variation in the heights of
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objects above the ground surface. This makes CHMs suitable for investigating

animals’ interactionswith their three-dimensional environment, with substantial

spatial detail. CHMs are especially useful in exploring how animal movement

decisions are linked to animals’ lines of sight (Aben et al. 2018; 2021). Weused the

Visibility Index plugin v1.2 (https://github.com/zoran-cuckovic/QGIS-visibility-

analysis) for QGIS v3.x (i.e., 3.0 or higher) to calculate the visibility index across

the CHM.We downsampled the CHM to 1m resolution to speed up computation

without losingmuchdetail. We used an observer height of 1.5mabove the canopy

surface; this is the height above either the actual tree canopy, or over any other

surface present in our landscape (water, open fields, settlements etc.). We used

an observer perception distance of 50 m, and calculated the proportion of 16

surrounding angles fromwhich any cell of the CHM could be observed (option

Incoming Views). This yielded a layer with as many cells as the CHM, and with

the same (1 m) resolution, with values of the visibility between 0 and 1.

In biological terms, the visibility index is an estimate of how exposed any loca-

tion is to a low-flying aerial predator, up to 50m away. Wemodelled these values

based on the hunting flights of a common bird-preying raptor, the Eurasian spar-

rowhawk (Accipiter nisus Krams 2001; Seress et al. 2011; Krams et al. 2020). We

also considered the visibility index of our study site from the point of view of

a typically high-flying raptor, the common kestrel (Falco tinnunculus), and re-

peated the visibility index calculations for an observer height of 15m (Fig. 3.6D).

Kestrels hovering above the landscape surface are conspicuous to prey species

whose avoidancemechanisms are primarily visual, such as small birds which rely

on spotting predators early and taking cover (Krams 2001; Krams et al. 2020).

Thus the strategy of bird-preying raptors such as sparrowhawks is to fly low over

the landscape surface (canopy or ground), and to attempt to surprise birds while

they have broken cover (Krams 2001; Seress et al. 2011; Krams et al. 2020). Ac-

counting for these natural history and behavioural aspects of birds’ predator-prey

interactions, we chose the 1.5m visibility index layer for our analyses.

The visibility index of locations in our study areawas strongly tied to land-cover,

as expected (Fig. 3.6C; compare Fig. 3.6A). Agricultural areas have visibility index

values≈1.0, and are unlikely to offermuch shelter fromaerial predators. Orchards

and areas of natural vegetation such as reedbeds are muchmore sheltered, with

visibility index values< 0.2. Built-up areas such as settlements, surprisingly, have

lower visibility scores than open agricultural fields, as human-made structures

are relatively tall and effectively obstruct the lines of sight of predators (Fig. 3.6C;

compare Fig. 3.6A).
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Figure3.6:Vegetationproductivity, exposuretopotentialpredators, andland-coveracross
theHulaValley, Israel. (A) Our study site in the Hula Valley in northern Israel is an agricultural-
natural habitat matrix. (B) There is substantial fine-scale variation in vegetation cover and
productivity (here, the normalised difference vegetation index: NDVI), even within areas of
similar land-cover. Areas shown in white are water bodies. (C)Despite substantial areas being
covered by growing vegetation, the majority of the study area is relatively exposed to a low-flying
aerial predator (such as Eurasian sparrowhawk Accipiter nisus, with a visibility index score ≈1.0.
Sheltered areas, with lower visibility index scores (< 0.4), form fine-scale refugia within the
agricultural landscape. However, areas covered by fruit tree orchards are very sheltered from
low-flying predators, with visibility index scores < 0.2. (D) The visibility of an area is strongly
dependent on the height of the observer, and nearly the entire study area is heavily exposed to a
high-flying aerial predator such as the commonkestrel (Falco tinnunculus), hovering at 15mabove
the surface. However, this also makes high-flying predators conspicuous to visually oriented prey
such as small birds. To counter this, bird-preying raptors such as sparrowhawks typically fly at
low heights to surprise small birds emerging from cover.
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Relationship betweenVegetation Productivity andVisibility

Fine-scale variation in vegetation structure, and especially in plant height,

creates three-dimensional habitat complexity,which translates into the sheltering

effect of vegetated habitats. This suggests that vegetation indices such as NDVI

could be used to examine the availability of shelter. We tested this hypothesis

by examining the relationship between NDVI and the visibility index using a

generalised additive model (GAM). We extracted the NDVI, visibility index, and

land-cover type for 10,000 equally spaced locations across our study area, and

excluded areas which were covered by water. We fit a GAMwith the formula:

visibility index ∼ 𝑠(NDVI , 𝑏𝑦 = landcover) + 𝑠(landcover, 𝑏𝑠 = ‵‵re′′)

This fit a separate smooth visibility-NDVI curve for each land-cover class, and

also modelled land-cover as a random effect (Wood 2017).

We found that the relation between NDVI and visibility index was statistically

significant, but the shape of the relationship was strongly influenced by land-

cover (Fig. 3.7; GAM degrees of freedom [DOF] = 2.99, estimate 𝐹 = 1,004.02, p <
0.001; 𝑅2 = 0.596). In areas covered by trees, NDVI values > 0.2 were uniformly

associated with low visibility (< 0.25), and thus, potentially more shelter from

aerial predators (GAM DOF = 5.117, estimate 𝐹 = 28.0, p < 0.001). In natural

reedbeds, we found a nearly linear relationship, with visibility declining with

increasing NDVI (GAMDOF = 2.227, estimate 𝐹 = 27.13, p < 0.001). Surprisingly,

in settlements and built-up areas, visibility was consistently < 0.5, despite rel-

atively low NDVI values overall < 0.5 (GAM DOF = 1.0, estimate 𝐹 = 14.85, p <
0.001). This is likely because tall structures such as houses block lines of sight

quite effectively. Agricultural fields and open areas had predictably high visibility

values (> 0.7) regardless of their NDVI values (GAM DOF = 6.827, estimate 𝐹 =
26.41, p < 0.001). Overall, in landscapes with mixed vegetation types, or with

substantial topological complexity, NDVI does not have a simple relationship

with the availability of shelter (GAMDOFs > 1.0). Selection for NDVI in animal

movement studies should thus be interpreted as selection for shelter only with

some caution. It is more accurate to obtain and use canopy height models to

calculate visibility indices and so to get an estimate of shelter with a basis in

the mechanisms of visual cognition. Where this is challenging, such as at larger

spatial scales, accounting for land-cover in habitat selectionmodels may be one

alternative.
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Figure 3.7: Generalised additive model fits showing the relationship between NDVI and the
visibility index. Visibility index shown here was calculated with an observer height of 1.5m,
which is representative of the hunting flight of bird-preying raptors (see Fig. S2C).

Modelling the Effect ofWing Gap Size on Large-scale

Movements

Wemodelled the effect of wing gap size, given by the wing gap index, on large-

scale movements using GAMs. We examined data from four non-migratory birds

common to our study area in northern Israel: barn swallows (Hirundo rustica),

white-spectacled bulbuls (Pycnonotus xanthopygos), house sparrows (Passer do-

mesticus), and clamorous reed warblers (Acrocephalus stentoreus). For bulbuls,

sparrows, and reed warblers, we fit one GAMwith species-specific curves to relate

the average hourly distance moved between areas of prolonged residence (“resi-

dence patches” Gupte et al. 2022b), and the individual wing gap indexWe used

the GAM formula:

distance between patches per hour ∼ 𝑠(wing gap index, 𝑏𝑦 = species, 𝑘 = 3)

+𝑠(species, 𝑏𝑠 = ‵‵re′′)

This fit a GAMwith wing gap index as a smoothed term with three knots allowed,

and species as a random effect (Wood 2017). Model coefficients are in Table 3.1.

To determine whether the molt-related wing gap’s size also affected the fre-

quency with which birds moved from one putative foraging patch to another, we
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Coefficients

Intercept 136.89 (60.97)∗

WGI - bulbul 1.90 (1.99)∗

WGI - sparrow 1.92 (1.99)∗∗∗

WGI - warbler 1.00 (1.00)
Species 1.96 (2.00)∗∗∗

AIC 2590.40
BIC 2619.82
Log Likelihood −1286.41
Deviance 2573521.55
Deviance explained 0.52
Dispersion 12726.89
R2 0.50
GCV score 13217.10
Num. obs. 210
Num. smooth terms 4
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3.1:Generalised additive model coefficients for distance between residence patches.
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Coefficients

Intercept 0.76 (0.13)∗∗∗

WGI - bulbul 1.93 (2.00)∗∗

WGI - sparrow 1.36 (1.59)∗

WGI - warbler 1.00 (1.00)
Species 1.92 (2.00)∗∗∗

AIC 175.48
BIC 202.97
Log Likelihood −79.52
Deviance 26.22
Deviance explained 0.29
Dispersion 0.13
R2 0.27
GCV score 0.13
Num. obs. 210
Num. smooth terms 4
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3.2:Generalised additive model coefficients for residence patch switches.

fit a GAM to the number of patch switches (essentially, the number of patches)

per hour of daytime tracking, using the formula:

number of patches visited per hour ∼ 𝑠(wing gap index, 𝑏𝑦 = species, 𝑘 = 3)

+ 𝑠(species, 𝑏𝑠 = ‵‵re′′)

Model coefficients are in Table 3.2. For swallows, we fit a GAM with distance

travelled per hour of tracking as the response, and the individual wing gap index

as the smooth predictor. This fit a GAMwith wing gap index as a smoothed term

with three knots allowed:

distance per hour ∼ 𝑠(wing gap index, 𝑘 = 3)

These results are reported in the main text.
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Modelling the Effect ofWing Gap Size on Patch

Occupancy

We examined whether birds’ molt-related wing gap size affected the duration

that they spent in each residence patch. Following from the results of the models

described above (see main text Figs. 1 – 2), we expected that molting birds would

spend a shorter duration in each patch, as this is the only way to achieve both

farther distances between patches, as well as more frequent patches, given a

constant flight speed. We fit a GAM to the duration (in hours) of each residence

patch as:

patch duration ∼ 𝑠(wing gap index, 𝑏𝑦 = species, 𝑘 = 3)

+ visibility index + ndvi

+ 𝑠(species, 𝑏𝑠 = ‵‵re′′)

Here, we also included the visibility index and NDVI as parametric fixed effects.

Model coefficients are in Table 3.3.

Modelling the Effect ofWing Gap Size onVisibility of

Residence Patches

WefitGAMswith species-specific smooths to examine the effect ofwinggap size

on the availability of shelter in individual birds’ residence patches. We included

NDVI as a smoothed term to account for the effect of vegetation productivity,

using the formula:

visibility ∼ 𝑠(winggapindex, 𝑏𝑦 = species, 𝑘 = 3)

+ 𝑠(NDVI , 𝑘 = 5) + 𝑠(species, 𝑏𝑠 = ‵‵re′′)

Here, the wing gap index is allowed 3 knots, while NDVI is allowed five knots for

a potentially more complex relationship. We did not find a significant effect of

wing gap index on species’ use of more sheltered patches. The one exception was

clamorous reed warblers, in which the visibility of residence patches decreased

linearly with increasing wing gap index (GAMDOF = 1.0 [a linear fit], 𝐹 = 16.354,

p < 0.001). Full model coefficients are reported in Table 3.4. NDVI had a signifi-

cant, non-linear relationship with visibility, as expected from our analysis of the

visibility-NDVI relationship above (GAMDOF = 3.885, 𝐹 = 172.493, p < 0.001).
Model results are version controlled at github.com/pratikunterwegs/holeybirds in

the file “data/results/mod_summary_rrv_visibility.txt”



90 CHAPTER 3

Coefficients

Intercept 1.15 (0.20)∗∗∗

Visibility index −0.80 (0.21)∗∗∗

NDVI 0.09 (0.27)
WGI - bulbul 1.98 (2.00)∗∗∗

WGI - sparrow 1.00 (1.00)
WGI - warbler 1.82 (1.96)∗

Species 1.84 (2.00)∗∗∗

AIC 6919.17
BIC 6979.39
Log Likelihood −3448.94
Deviance 3230.34
Deviance explained 0.06
Dispersion 1.53
R2 0.06
GCV score 1.54
Num. obs. 2115
Num. smooth terms 4
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3.3:Generalised additive model coefficients for residence patch duration.
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Coefficients

Intercept 0.33 (0.02)∗∗∗

NDVI 1.00 (1.00)∗∗

WGI - bulbul 1.00 (1.00)
WGI - sparrow 1.76 (1.94)
WGI - warbler 3.90 (3.99)∗∗∗

Species 1.88 (2.00)∗∗∗

AIC −2108.51
BIC −2046.84
Log Likelihood 1065.79
Deviance 22.94
Deviance explained 0.35
Dispersion 0.01
R2 0.34
GCV score 0.02
Num. obs. 1550
Num. smooth terms 5
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3.4:Generalised additive model coefficients for residence patch visibility.
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Examining the Effects of Visibility andVegetation

Productivity onHabitat Selection

Finding a correlation between vegetation growth in the form of NDVI, and

visibility, we adopted a step-selection approach (Fieberg et al. 2010; Signer et

al. 2019; Fieberg et al. 2021) to disentangle the effects of these two factors on

the movements of molting birds. We performed this analysis on the movements

of bulbuls, sparrows, and reed warblers between their residence patches. We

excluded swallows because we had not constructed residence patches for these

birds, and because we could not resolve their flight altitude, making it difficult to

determine whether they were using shelter.

We drew 9 alternative patchmovements for every real patchmovement, that

is from patch 𝑁 to patch 𝑁 + 1, and sampled 15 locations distributed around

the alternative moves. We drew the locations of the 9 alternative movements by

drawing first a distance from a gamma distribution fitted to each individual’s

daily movements between patches, and second, an angle drawn from a VonMises

distributionfitted to the individual’s turninganglesduring large-scalemovements

between patches (see main text Fig. 1). For each of these alternative moves,

we drew 15 locations from a normal distribution centred on the coordinates

of the move, with a standard deviation of 20 m. In this way, we constructed

‘alternative residence patches’, which we could compare with the patches that

birds actually used. At each of the 135 alternative locations (15 locations × 9

patches) we obtained the NDVI and visibility index.

We compared the NDVI and visibility of the 15 points in each potential patch,

with the NDVI and visibility of a flexible number of real positions of patches

actually used by individuals, by fitting a conditional logistic regression to the

patch status (real or alternative). On average, across species andmolt status, there

were 28.1 real positions (SD = 25.3) compared against 251 potential positions (SD

= 228). In this way, we were able to determine how birds selected for vegetation

productivity and shelter whenmoving. Since most birds’ residence patches are

in high-NDVI low-visibility areas (see main text Fig. 4), but are surrounded by

high-NDVI, high-visibility areas, this allowed us to disentangle the provisioning

effects of vegetation from its sheltering effects.

We fit separate regressions for each molt status for each of the three species,

using the formula:

case_ ∼ visibility +NDVI + strata(step identity)
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We chose the “approximate” fitting method to reduce computational time. Model

coefficients are presented in Table 3.5; negative coefficients indicate selection

against visibility, and for shelter.

-.-
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Part II

MECHANISTICMODELSOF THE

EVOLUTIONOFANIMALMOVEMENT

Animal movement is neither random nor optimal, but the outcome

of individuals makingmovement decisions based on local informa-

tion. The strategies underlying these decisions are, like everything

in biology, shaped by animals’ evolutionary contexts. Yet evolution

is rarely considered in animal movement models, possibly because

it is considered to be too slow to be relevant to outcomes on human

timescales.

In the second part of this thesis, I probe the evolutionary causes and

consequences of animal movement usingmechanistic, individual-

based simulationmodels.

-.-





InterludeB
APrimer toMechanistic, Individual-basedModels asConceptualTools in

EvolutionaryEcology

PratikR. Gupte

Here, I present a prototype of the models I outlined in the Introduction, in

order to show howmy approach differs from approaches used thus far. I show

that considering movement as the outcome of evolved preferences for locally

available cues leads to very different ecological outcomes when compared to

mainstream frameworks such as random walks and optimal local movement.

These differences can be important when such models are used as baselines

against which to compare patterns observed from empirical animal tracking

data, or to make predictions for how key ecological processes — such as the

transmission of pathogens or culture— occur in animal populations (Cantor et al.

2021). Here I focus on movement strategies following Bastille-Rousseau and

Wittemyer (2019), which are among the behavioural strategies of individuals,

and which may also facilitate or constrain which other behavioural strategies

individuals can employ (Nathan et al. 2008; Spiegel et al. 2017).

I compare ecological outcomes of four movement scenarios of a model with

the same ecological processes. In mymodel, 200 individuals inhabit a landscape

of 30 square units, which also contains 450 discrete food items (see Fig. B-1).

Food items are patchily distributed to form distinct clusters (N = 30, 15 items

per cluster). For the sake of simplicity, individuals choose only a movement

direction, and have the samemovement distance of 1 distance unit (like a king in

chess; see Fig. B-1). Individuals can perceive food items (𝐹) and other individuals
at locations 1 distance unit away. When individuals perceive a food item, they

pick it up and handle it for 5 time-steps until they can gain its energetic benefit

(Ruxton et al. 1992; Gupte et al. 2021; Gupte et al. 2022a); I call such individuals

‘handlers’ (𝐻). While individuals are handling an item, they are immobilised.

Individuals compete with each other exploitatively and an item once picked up

by an individual is unavailable to its neighbours; these individuals continue

searching for food, and I call them ‘non-handlers’ (𝑁). Items regenerate at the

same location after a fixed number of timesteps, which I call the regeneration

time (𝑇𝑅; default = 100), and while an item is regenerating, it cannot be sensed by

nearby individuals. Individuals have a lifetime of 400 timesteps, over which they
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forage andmove over the landscape. The model’s four scenarios differ in their

implementation of individual movement.

Figure B-1: Schematic for a conceptualmodel of individual foragingmovement as a series
of discrete steps in continuous space,withmovement steps selected based on individual
preferences for environmental cues. In this model, individuals search for patchily distributed
food items (green circles), which may be immediately available (filled green circles; F), or
may be available only in the future (opengreen circles). Individuals can sense only available
items, and not unavailable ones. However, as food items are clustered, available items are a
good indirect indicator of where resource clusters are, and where itemsmay become available
in the future. Individuals can also sense other foraging individuals, and can sense whether they
have successfully found, and are handling, a food item (handlers; blue circles), or whether
they are unsuccessful foragers still searching for food (non-handlers; filled pink circles; N).
To decide where to move, individuals sample their environment for these three cues (F, H, N)
at their current location (red circle), and at a number of locations around themselves (large
open grey circles; here, 8 locations). When the sensory range is relatively large there is some
small overlap in samples. Individuals take their next step by assigning each potential direction
a suitability, 𝑆 = 𝑠𝐹𝐹 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁 + 𝜖, where the coefficients 𝑠𝐹, 𝑠𝐻, 𝑠𝑁 are individual weights for
environmental cues (‘cue preferences’), and 𝜖 is a small error term that helps break ties between
locations. The individual moves in the direction of highest suitability the cue weights fully
determine the movement of an individual. Then say that the cue weights can be implemented as
heritable and, hence, evolvable properties.
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Scenarios in theModel

In scenario 1, individuals perform a randomwalk, and have a uniform prob-

ability of either remaining in their current location, or moving in a direction

chosen from among eight locations within 1 distance unit (see Fig. B-2A); here,

movement is independent of local cues. In scenario 2, individuals move in a way

that is considered locally optimal in foraging ecology (Stephens and Krebs 2019;

Scherer et al. 2020). Each individual assesses local cues at its current location,

and eight surrounding locations— the number of available food items (𝐹), and
the number of potential competitors (𝑁 +𝐻) — andmoves to the location with

the highest expected intake, which is given by (𝐹/(𝑁 +𝐻 +1)) + 𝜖; 𝜖 is a small error

term. I initially contrast these two scenarios to showhow adding suitability-based

decisionmaking to individual movement can affect the outcomes of movement

individual-basedmodels.

Locally optimal movement models are often labelled mechanistic as they in-

clude environmental cues in decisionmaking (e.g. Scherer et al. 2020), yet the

expected payoff of a location is strongly influenced by the functional response

of intake in relation to competitors. Such implementations make the implicit

evolutionary assumption that all individuals individuals can ‘sense’ the fitness

revenue per location and thenmove in the direction of fitness increase. I show-

case a moremechanistic way in which individuals can determine their optimal

step whenmaking foraging movements, which is to have distinct preferences for

local cues (food items and potential competitors). These preferences are similar

to the coefficients of habitat- and step-selection functions (Manly 2002; Fortin

et al. 2005; Thurfjell et al. 2014).

In my model’s scenario 3, individuals assesses local cues — the number of

available food items (𝐹), and the number of potential competitors (𝑁 +𝐻) — at

eight locations around themselves, and move to the location with the highest

assessed suitability: 𝑆 = 𝑠𝐹𝐹+𝑠𝐶(𝑁 +𝐻)+𝜖. Here, 𝑠𝐹 and 𝑠𝐶 are inheritedmovement

preferences for food items and potential competitors respectively, and can take

any positive or negative numeric values; 𝜖 is a small error term. It is the relative

contribution of 𝑠𝐹 and 𝑠𝐶 that determines individuals’movement strategy (similar

to the behavioural hypervolume of Bastille-Rousseau and Wittemyer 2019). I

initialised the populations to have a broad range ofmovement strategies, so that it

contained individuals with different combinations of preferences and avoidances

of either food items or competitors. This assumption matters, as it speeds up

initial evolutionbyorders ofmagnitude. Thismethod is useful for obtaining afirst

‘quick’ overview of the evolutionary outcome, but it is advisable to check whether

the same outcome is achieved when starting with a monomorphic population

with zero cue weights.
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In my evolutionary approach, I ammore interested in cue weights (and strate-

gies) that have evolved subject to natural selection. Since individuals inherit their

cue weights from their parents, and successful parents producemore offspring

(lifetime intake is the proxy for ‘fitness’), successful movement strategies are

transmitted to more offspring and will thus spread in the population (an expec-

tation from the replicator equation: Hofbauer and Sigmund 1988). To examine

whichmovement strategies evolved, I added an evolutionary component to the

model: over 100 generations, individuals reproduce, passing on their preferences

(𝑠𝐹, 𝑠𝐶) to their offspring. The preference values undergo random, independent

mutations with a probability 𝑝 = 0.01, and with amutation step size drawn from a

Cauchy distribution with a scale of 0.01. Consequently, mostmutations are small,

but larger mutations do occasionally occur.

For simplicity, I assume fixed population size, discrete, non-overlapping gener-

ations, asexual reproduction, and haploid individuals. I implemented large-scale

natal dispersal, such that individuals are typically initialised (‘born’) within a

standard deviation of 10 units of their parents (see Travis et al. 1999 for a consid-

eration of how dispersal itself evolves). This makes scenario 3 relatively similar

to the random initialisation of individual positions in scenarios 1 and 2. These

modelling choices must be explicitly implemented in simulationmodels’ code,

bringing the assumptions of classical models — treated as received wisdom and

hence ignored— to the fore.

A key feature of individual-based simulation models is their ability to incorpo-

rate great amounts of ecological detail (DeAngelis and Diaz 2019). With a simple

extension to scenario 3, I show how to add biologically relevant details to mod-

els, and how these details can affect model outcomes. Foraging can be a form

of public information, serving as an indirect cue of the presence of resources,

and furthermore, helping distinguish between individuals that are immediate

competitors (here, non-handlers), and those which are only future potential com-

petitors (Dall et al. 2005; Beauchamp 2008; 2013; Giraldeau and Caraco 2018:

here, handlers). Thus in my scenario 4, I allow individuals to sense the handling

status of nearby potential competitors, and to have separate heritable preferences

for handlers (𝑠𝐻) and non-handlers (𝑠𝑁). Individuals assess the suitability of
locations as 𝑆 = 𝑠𝐹𝐹 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁 + 𝜖; 𝜖 is a small error term. I implemented the

same evolutionary and dispersal assumptions as in scenario 3.

Comparing Scenario Outcomes

As expected, optimally moving scenario 2 individuals had a higher per-capita

intake than randomly moving scenario 1 individuals (Fig. B-2). Individuals with

higher intake should be expected to move less, as mymodel — in line with for-

aging ecology theory (Charnov 1976) — explicitly considers a tradeoff between
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movement and intake. Specifically, the tradeoff is that when an individual is

handling, it cannot move towards areas of higher future expected intake, and

if an individual moves into locations where there are no food items, it loses out

on intake. Individuals following a locally optimal strategy moved more than

random walkers (Fig. B-2), a clear confirmation of the expectation that such a

strategy ismore efficient than randomwalking (i.e., more food for lessmovement).

Nonetheless, individuals in both scenarios had very similar numbers of spatial

associations with other individuals (Fig. B-2, Fig. B-3). Overall, this comparison

demonstrates the importance of active decisionmaking in animalmovement, and

suggests why animals have evolved sophisticated sensory apparatuses to gather

information from their environment (Avgar et al. 2013; Mann 2021; Swain et al.

2021; Berger et al. 2022). Such evolution is likely to be strongly dependent on

fine-scale ecological conditions, primarily the availability of information in the

environment, as well as the energetic cost of evolving andmaintaining sensory

capabilities (Swain et al. 2021).

I found that all 20 replicates of scenario 3 models showed that populations

converged to a similar movement strategy within only a few (100) generations.

This strategy was to primarily prefer moving towards food items, while having a

small preference or avoidance of potential competitors. The ‘evolved’ scenario 3

individuals had better ecological performance than their ancestral populations

(which I consider the first generation, G = 1), taking inmore food items on average,

and moving less. Indeed, these populations outperformed both the random

walk and locally optimal movement implementations as well. Adapting their

movement strategies to the landscape also affected the social structure of scenario

3 populations— there were fewer isolated individuals, more spatial clustering,

and consequently, individuals encountered more unique conspecifics on average

(higher mean degree; Fig. B-3).

Individuals evolved after 100 generations in scenario 4 hadmostly evolved a

movement strategy that I describe as ‘handler tracking’, i.e., having a preference

for successful neighbours handling a food item (𝑠𝐻 > 0), but avoiding unsuccess-

ful neighbours that were still searching for a food item (𝑠𝑁 < 0; Gupte et al. 2021;

Gupte et al. 2022a). Importantly this strategy allows individuals to use indirect

social information (Dall et al. 2005; Spiegel and Crofoot 2016), in the form of the

positions of successful neighbours, to find resource clusters — even when these

clusters are not immediately perceptible (due to earlier depletion).

Consequently, scenario 4 individuals outperform all three previous scenarios’

individuals by having a higher mean per-capita intake (Fig. B-2; in some cases,

substantially higher). This naturally leads to the conclusion that the resource

landscape in scenario 4 is more depleted than in the three previous scenarios.

While not shown here, scenario 4 individuals after 100 generations of selection,
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FigureB-2: Population ecological outcomes resulting from four types ofmovement strat-
egy. (A) In scenario 1, individuals moving randomly across the landscape had expectedly lower
per-capita intake than individuals moving in a locally optimal way (scenario 2). When individu-
als selected their movement step based on heritable movement preferences for food items and
conspecific competitors (scenario 3, ‘mechanistic 2 cues’), after only 100 generations of natural
selection for adaptive movement preferences, scenario 3 populations had a higher intake than
ostensibly locally ‘optimal’ movement. Allowing individuals to differentiate between current and
future competitors (non-handlers and handlers, respectively; scenario 4, ‘mechanistic 3 cues’),
improved individuals’ intake by a small amount, suggesting that adding information sources
likely has diminishing returns, and that relatively simple step-selectionmovement strategies may
suffice on even complex, fluctuating resource landscapes. (B) Surprisingly, locally optimalmovers
alsomovedmore than randomwalkers, with no apparent trade-off betweenmovement and intake.
Individuals in scenario 3moved less than those in scenario 2 (locally optimal), but still more than
random walkers. Individuals in scenario 4 moved about the same as those in scenario 3, sug-
gesting that being able to perceive neighbours’ foraging status does indeed lead to more efficient
movement strategies (i.e., more intake for similar movement). (C)Movement implementations
strongly influenced individuals’ associations (based on proximity), with step-selection based
movement leading to many times more associations than random or locally optimal movement.
Surprisingly, individuals in scenario 4 hadmanymore associations than in scenario 3; this shows
an unexpected difference that could have substantial consequences for the outcomes of social
processes such as the transmission of animal culture or infectious pathogens.

also outperform scenario 4 populations that have not undergone selection (i.e.,

their ancestors), demonstrating the difference that adding evolutionary dynamics

makes even to a mechanistic, habitat selectionmodel.

Scenario 4 individuals’ evolved use of social information on the potential lo-

cations of resource clusters also leads them to have more spatial associations

with conspecifics — indeed, up to three times as many as in the randomwalk and

locally optimal movement models (Fig. B-2). These associations likely occur at

or near resource clusters, leading to substantial spatial-social clustering in the

final generation of scenario 4 populations (Fig. B-3); and scenario 4 individuals

across replicates associated withmore individuals than in scenarios 1, 2 and 3.

Spatial-social structure in animal populations can have important consequences
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for a wide range of processes and phenomena in animal ecology, including the

transmission of animal culture as well as the spread of infectious pathogens (Ro-

mano et al. 2020; Cantor et al. 2021; Romano et al. 2021). The class of models

I advocate are thus well suited to investigating questions around the emergent

structure of animal societies (see Chapter 5 for more on this).

Figure B-3: Different movement strategies lead to substantially different patterns of
spatial-social associations. Individuals moving randomly (A: scenario 1), or in locally optimal
ways (B: scenario 2) have sparse social networks, with individuals spread out over the simulated
resource landscape. Most individuals have a low degree, i.e., few unique social partners. (C) In
contrast, individuals making step-selection basedmovement decisions based on two cues (food
and competitors; scenario 3) havemuchmore spatially clustered networks, with a substantially
higher mean degree (more unique social partners). Over 100 generations, scenario 3 individuals
are selected for their preference for food items, and the resulting populations form networks
that are also clustered, but with strong connectivity between clusters, andmore unique partners
overall. (D) A similar dynamic is seen in scenario 4, where most individuals still avoid immediate
competitors (non-handlers), leading to more dispersed populations than scenario 3, though with
strong links between nodes.
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Visualising and Interpreting Evolved Variation

In scenarios 3 and 4, individuals’ movement preferences (their weights for

local environmental cues) may take any numeric value. It is the combination of

these weights that altogether forms each individual’s movement strategies; this

approach has been referred to as the ‘behavioural hypervolume’ approach when

applied to step-selection coefficients estimated from real animal tracking data

(Bastille-Rousseau andWittemyer 2019). One challenge in encoding behavioural

strategies in this way is interpreting the evolved variation in strategies, if any.

A key step in doing so is exploratory visualisation — the evolved movement

preferences can be plotted in relation to each other to check for any obvious

clusters.

Here, I would caution that conceptual individual-based models (and step-

selection functions fitted to empirical data) may have to deal with a large num-

ber of model parameters (Mueller et al. 2011), or function coefficients (Bastille-

Rousseau and Wittemyer 2019). This makes clustering and interpreting these

individual-level attributes a challenge, requiringcomplexclassificationapproaches

(Bastille-Rousseau andWittemyer 2019). This challenge is a powerful incentive

to keep conceptual models’ step-selection calculations as simple as possible.

In contrast, in my conceptual models, cue weights can be readily plotted in

three dimensional space (with scenario 3 requiring only two dimensions for 𝑠𝐹
and 𝑠𝐶). Here, I show how the three-weight individuals of scenario 4 (with 𝑠𝐹, 𝑠𝐻,
and 𝑠𝑁) can be represented in a convenient figure: with 𝑠𝐹 and 𝑠𝐻 as the X and Y

axes respectively, and the weight for non-handlers 𝑠𝑁 represented by a diverging

colour scale (Fig. B-4).

The interpretation of this figure, which also helps with similar figures in chap-

ters 4 and 6 is as follows. Each point on the figure represents a single individual.

Each individual is plotted in a three dimensional space (colour representing po-

sition in the third dimension); this is Bastille-Rousseau andWittemyer (2019)’s

behavioural hypervolume. Each individual’s position is calculated by scaling

each of its cue preferences (say, 𝑠𝑖) by the sum of the absolute cue preferences:

scaled 𝑠𝑖 = 𝑠𝑖/(Σ|𝑠𝑛|). Thismeans that regardless of the number of cue preferences

(in this case, three), all axes are bounded by [-1, +1]. The regions individuals can

take in the two primary axes is bounded by the dashed lines.

Individuals that lie towards the extremes (-1 or +1) of any axis should be inter-

preted as making their movement decisions primarily based on that particular

cue. For example, in Fig. B-4, many individuals have values of 𝑠𝐹 close to +1.0,
indicating that they ‘assign’ food item cues the highest, and indeed nearly all the

weight whenmakingmovement decisions. Another perspective on this is that for

such individuals, the combination of cue values and the individuals’ weight for
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them (e.g. 𝑠𝑁×𝑁) is often less than 𝜖, i.e., their sensitivity to the cue is on the order
of their perception error — not of great importance. This same interpretation

applies to individuals’ position on the colour scale; extreme values indicate a

strong preference or avoidance of the relevant cue (here, 𝑠𝑁).

Interestingly, plotting individuals’ evolved movement strategies in this way

reveals that there is a substantial amount of variation among individuals. Indeed,

individuals appear to occupy a spectrum between prioritising only food item cues

(high 𝑠𝐹) and only handler cues (high 𝑠𝐻). More rarely, some individuals’ position

indicates that they have a strong avoidance of non-handlers. In this model, this

suggests that a broad range of movement strategies can and does coexist, neatly

demonstrating that behavioural variation can arise spontaneously from simple

mechanistic assumptions in this class of models. Similar figures in chapters 4

show how strong correlations can arise betweenmovement strategies as shown

here, and other behavioural strategies.

-.-
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FigureB-4: Evolvedvariation in step-selectionmovement strategies revealedby simple
visualisation of evolved cueweights in scenario 4. Plotting the scaled values of the heritable
movement preferences (weights for local environmental cues) in a trait space bounded by [-1,
+1] can reveal evolved individual variation inmovement strategies. Here, most individuals lie
along a behavioural spectrum: on one end (𝑠𝐹 ≈ +1.0), some individuals’ movement decisions are
mostly influenced by differences (if any) among food item counts at the potential destinations.
On the other end (𝑠𝐻 ≈ +1.0), some individuals prioritise moving towards locations where there
are many handlers. These patterns emerge spontaneously as results of natural selection from the
simplemechanisms encoded by themodel, without being forced by themodeller to represent any
specific phenomenon. Yet they can be interpreted as showing the evolution andmaintenance of
individual variation, and especially of a broadmixture of producer-scrounger foraging strategies
(Beauchamp 2008).

106



Chapter4
TheJointEvolutionofAnimal

MovementandCompetition

Strategies

PratikR. Gupte, Christoph F.G. Netz1, and Franz J. Weissing1

Co-author Affiliations

1. University of Groningen, The Netherlands.

Funding

European Research Council

Δ Amanuscript under review at The AmericanNaturalist.

107



…[T]he highest function of ecology is the understanding of consequences.

— fromDune, by FrankHerbert.

Abstract

Competition typically takes place in a spatial context, but eco-evolutionary

models rarely address the joint evolution of movement and competition strate-

gies. Here we investigate a spatially explicit forager-kleptoparasite model where

consumers can either forage on a heterogeneous resource landscape, or steal

resource items from conspecifics (kleptoparasitism). We consider three scenarios:

(1) foragers without kleptoparasites; (2) consumers specializing as foragers or as

kleptoparasites; and (3) consumers that can switch between foraging and klep-

toparasitism depending on local conditions. Wemodel movement strategies as

individual-specific combinations of preferences for environmental cues, similar

to step-selection coefficients. Usingmechanistic, individual-based simulations,

we study the joint evolution of movement and competition strategies, and we

investigate the implications for the distribution of consumers over this landscape.

Movement and competition strategies evolve rapidly and consistently across

scenarios, with marked differences among scenarios, leading to differences in

resource exploitation patterns. In scenario 1, foragers evolve considerable indi-

vidual variation in movement strategies, while in scenario 2, movement strategy

shows a swift divergence between foragers and kleptoparasites. When individu-

als’ competition strategy is conditional on local cues, movement strategies facili-

tate kleptoparasitism, and individual consistency in competition strategy also

emerges. Across scenarios, the distribution of consumers differs substantially

from ‘ideal free’ predictions. This is related to the intrinsic difficulty of moving

effectively on a depleted resource landscape with few reliable movement cues.

Our study emphasises the advantages of a mechanistic approach when studying

competition in a spatial context, and suggests how evolutionary modelling can

be integrated with current work in animal movement ecology.
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Introduction

I
NTRASPECIFIC competition is an important driver of population dynamics and

the spatial distribution of organisms (Krebs and Davies 1978), and has two

main types, ‘exploitation’ and ‘interference’. In exploitation competition, individ-

uals compete indirectly by depleting a common resource, while in interference

competition, individuals compete directly by interacting with each other (Birch

1957; Case and Gilpin 1974; Keddy 2001). A special case of interference com-

petition which is widespread among animal taxa is ‘kleptoparasitism’, in which

an individual steals a resource from its owner (Iyengar 2008). Since competi-

tion has an obvious spatial context, animals should account for the locations of

competitors when deciding where to move (Nathan et al. 2008). This is expected

to have downstream effects on animal distributions across spatial scales, from

resource patches (Fretwell and Lucas 1970), to species distributions (Duckworth

and Badyaev 2007; Schlägel et al. 2020). Animal movement strategies are thus

likely to be adaptive responses to landscapes of competition, with competitive

strategies themselves being evolved responses to animal distributions. Empirical

studies of this joint evolution are nearly impossible at large spatio-temporal scales.

This makesmodels linking individual movement and competition strategies with

population distributions necessary.

Contemporary individual-to-populationmodels of animal space-use (reviewed

in DeAngelis and Diaz 2019) and competition, however, are only sufficient to

represent very simplemovement and prey-choice decisions. For example,models

including the ideal free distribution (IFD; Fretwell and Lucas 1970), information-

sharingmodels (GiraldeauandBeauchamp1999; Folmeret al. 2012), andproducer-

scroungermodels (Barnard and Sibly 1981; Vickery et al. 1991; Beauchamp2008),

often treat foraging competition in highly simplified ways. Most IFDmodels con-

sider resource depletion unimportant or negligible (continuous input models,

see Tregenza 1995; Van Der Meer and Ens 1997), make simplifying assumptions

about interference competition, or evenmodel an ad hoc benefit of grouping (e.g.

Amano et al. 2006). Meanwhile, producer-scrounger models primarily examine

the benefits of choosing either a producer or scrounger strategy given local condi-

tions, such as conspecific density (Vickery et al. 1991), or the order of arrival on

a patch (Beauchamp 2008). Overall, these models simplify themechanisms by

which competition decisions are made, and downplay spatial structure (see also

Holmgren 1995; Spencer and Broom 2018; Garay et al. 2020).

On the contrary, spatial structure is key to foraging (competition) decisions

(Beauchamp 2008). How animals are assumed to integrate the costs (and po-

tential benefits) of competition into their movement decisions has important

consequences for theoretical expectations of population distributions (Van Der
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Meer and Ens 1997; Hamilton 2002; Beauchamp 2008). In addition to short-

term, ecological effects, competition also likely has evolutionary consequences

for individualmovement strategies, setting up feedback loops between ecology

and evolution. Modelling competition andmovement decisions jointly is thus a

major challenge. Somemodels take an entirely ecological view, assuming that

individualsmove or compete ideally, or according to fixed strategies (Vickery et al.

1991; Holmgren 1995; Tregenza 1995; Amano et al. 2006), but see (Hamilton

2002). Models that include evolutionary dynamics in movement (De Jager et al.

2011; 2020) and foraging competition strategies (Beauchamp 2008; Tania et al.

2012) are more plausible, but they too make arbitrary assumptions about the

functional importance of environmental cues to individual decisions.

Mechanistic, individual-basedmodels are well suited to capturing the complex-

ities of spatial structure, animal decision-making, and evolutionary dynamics

(Guttal and Couzin 2010; Kuijper et al. 2012; Getz et al. 2015; 2016; White et al.

2018b; Long and Weissing 2020; Netz et al. 2021b); for conceptual underpin-

nings see Huston et al. (1988), Mueller et al. (2011), and DeAngelis and Diaz

(2019). Individual-basedmodels can incorporate the often significant variation

inmovement and competition preferences found in populations, allowing indi-

viduals to make different decisions given similar cues (Laskowski and Bell 2013).

Individual-based models also force researchers to be explicit about their mod-

elling assumptions, such as how exactly competition affects fitness. Similarly,

rather than taking a purely ecological approach and assuming individual differ-

ences (e.g. in movement rules: White et al. 2018b), allowingmovement strategies

to evolve in a competitive landscape can reveal whether individual variation

emerges in plausible ecological scenarios (as in Getz et al. 2015). This allows the

functional importance of environmental cues formovement (see e.g. Scherer et al.

2020) and competition decisions in evolutionary models to be joint outcomes of

selection, and lets different competition strategies to be associated with different

movement strategies (Getz et al. 2015).

Here, we present a spatially-explicit, mechanistic, individual-based model

of intraspecific foraging competition, where movement and competition strate-

gies jointly evolve on a resource landscape with discrete, depletable food items

that need to be processed (‘handled’) before consumption. In our model, for-

agers make movement decisions using inherited, evolvable preferences for local

ecological cues, such as resource and competitor densities; the combination of

preferences for each cue forms individuals’movement strategy (similar to relative

step-selection: Fortin et al. 2005; Avgar et al. 2016). Lifetime resource consump-

tion is our proxy for fitness; more successful individuals produce more offspring,

transmitting their movement and foraging strategies to future generations (with

small mutations). We consider three scenarios: in the first scenario, we examine
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only exploitation competition. In the second scenario, we introduce kleptopara-

sitic interference as an inherited strategy, fixed through an individual’s life. In the

third scenario, we model kleptoparasitism as a behavioural strategy conditioned

on local environmental and social cues; the mechanism underlying this foraging

choice is also inherited.

Our model allows us to examine the evolution of individual movement strate-

gies, population-level resource intake, and the spatial structure of the resource

landscape. The model enables us to take ecological snapshots of consumer-

resource dynamics (animal distributions, resource depletion, and competition)

proceeding at evolutionary time-scales. Studying these snapshots allows us to

check whether, when, and to what extent the spatial distribution of competi-

tors resulting from the co-evolution of competition and movement strategies

corresponds to standard IFD predictions. We investigate (1) which movement

strategies evolve in our three competition scenarios, (2)whethermovement strate-

gies differ within and between competition strategies in our scenarios, and (3)

whether the emergent spatial distributions of consumers corresponds to ‘ideal

free’ expectations.

TheKleptomoveModel ofMovement and Competition

Individual-based models have to explicitly specify numerous assumptions

(e.g. spatial structure, individual interactions, event timescales), but this helps

expose assumptions that are often hidden below the surface in analytical models.

We kept our model assumptions as simple and generic as possible, striving for

general, conceptual insights. To keep the model realistic, we based it on the

foraging behavior of shorebirds such as oystercatchers (Haematopus spp.), which

are extensively studied in the context of foraging competition, both empirically

(e.g. Vahl et al. 2005a,b; 2007; Rutten et al. 2010a,b), and using individual-based

models (reviewed in Stillman and Goss�Custard 2010).

Our environment is a fine grid of cells, and each grid cell can hold multiple

individuals. Resources are discrete, as is our conception of time within and

between generations. Our population, with a fixed number of individuals (N

= 10,000), moves on a landscape of 5122 grid cells (approx. 1 individual per

26 cells), with wrapped boundaries (i.e., a torus); individuals passing beyond

the bounds at one end re-appear on the opposite side. Themodel has two time

scales, first, an ecological time scale of 𝑇 timesteps comprising one generation

(default 𝑇 = 400), during which individuals move, make foraging decisions, and

handle prey-items they find or steal. Individuals are immobile while handling

food items, creating the conditions for kleptoparasitism (Brockmann and Barnard

1979; Ruxton et al. 1992). At the end of each generation, individuals reproduce,
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transmitting their movement and foraging strategies to their offspring, whose

number is proportional to individual intake at the ecological time scale. Our

model has 1,000 generations, and this comprises the evolutionary timescale.

Resource Landscape

We considered our discrete resources, called ‘prey-items’ to represent mussels,

a common prey of many shorebirds, whose abundances are largely driven by

external gradients. We assigned each cell a constant probability of generating a

new prey-item per timestep, which we refer to as the cell-specific growth rate 𝑟.
Wemodelled clustering in landscape productivity by having the distribution of 𝑟
across the grid take the formof 1,024 resourcepeaks, placedat regular distances of

16 grid cells from the peaks around them; 𝑟 declines from the centre of each peak

(called 𝑟𝑚𝑎𝑥) to its periphery (see Fig. 4.1A). Thus the central cell generates prey-

items five times more frequently than peripheral cell: at 𝑟𝑚𝑎𝑥 = 0.01, central cells

generate one item per 100 timesteps (four items/generation), while the peripheral

cells generate one item only every 500 timesteps (< one item/generation). All

landscape cells have a uniform carrying capacity 𝐾 of 5 prey-items. While a cell is

at carrying capacity its 𝑟 is 0. Cells are initialised with prey-items proportional to

their 𝑟 (see e.g. Fig. 4.1A).

Foragers perceive a cue indicating the number of prey-items 𝑃 in a cell, but

fail to detect each itemwith a probability 𝑞, and are thus successful in finding a

prey-item with a probability 1 − 𝑞𝑃. Individuals on a cell forage in a randomised

sequence, and the probability of finding a prey-item (1 − 𝑞𝑃) is updated as indi-
viduals find prey, reducing 𝑃. Foragers that find a prey-itemmust handle it for a

fixed handling time 𝑇𝐻 (default = 5 timesteps), before consuming it (Ruxton et al.

1992). Natural examples include the time required for an oystercatcher to break

through amussel shell, or a raptor to subdue prey; overall, the handling action

is obvious, and the prey is not fully under the control of the finder (Brockmann

and Barnard 1979). Foragers that do not find a prey-item are considered idle in

that timestep, and are counted as ‘non-handlers’. Similarly, handlers that finish

processing their prey in timestep 𝑡 can only forage again in timestep 𝑡 + 1, i.e.,
they are idle in the timestep 𝑡.

All individuals move simultaneously at the end of each timestep 𝑡, and then
implement their foraging or kleptoparasitic behaviour to acquire prey. However,

handlers do not make any movements until they have fully handled and con-

sumed their prey. We model movement as comprised of small, discrete steps

between adjacent cells. Across scenarios, individuals make movement decisions

using evolved cue preferences. Individuals select a destination cell, after assess-

ing potential destinations based on available cues, similar to approaches used
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previously (Getz et al. 2015; 2016; White et al. 2018b; Scherer et al. 2020; Netz

et al. 2021b).

To move, individuals scan the nine cells of their Moore neighbourhood for

three environmental cues, (1) an indication of the number of discrete prey-items

𝑃, (2) the number of individuals handling prey𝐻 (‘handlers’), and (3) the num-

ber of individuals not handling prey 𝑁 (‘non-handlers’). Individuals rank the

potential destinations (including their current cell) by their suitability 𝑆, where
𝑆 = 𝑠𝑃𝑃 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁, and move to the most suitable cell in timestep 𝑡 + 1. The
individual preferences for each cue, 𝑠𝑃, 𝑠𝐻, and 𝑠𝑁, have numeric values, are con-

sidered to be evolvable traits that can be transmitted between generations, and

undergo independent mutation. Since individuals are constrained to perceiving

andmoving short distances, theymay not always sense their best long-termmove.

It is the combination of cue preferences, and especially their value relative to

each other, that determines individual movement decisions (similar to relative

selection coefficients, Fortin et al. 2005; Avgar et al. 2016; White et al. 2018b).

For example, an extreme value of 𝑠𝑃 relative to the other preferences would mean

that an individual’s movement decisions are guided primarily by differences in

the local density of prey-items. We call an individual’s combination of inherited

preferences itsmovement strategy (see e.g. Fig. 4.1E).

Competition Strategies

In scenario 1, we simulate only exploitative competition; individuals (hence-

forth called ‘foragers’) move about on the landscape and probabilistically find,

handle, and consume prey-items. Foragers can be either in a ‘searching’ or a

‘handling’ state (Holmgren 1995).

In scenario 2, the competition strategy is genetically determined and transmit-

ted from parents to offspring: exploitative competition (by foragers), or kleptopar-

asitic interference (by kleptoparasites). Kleptoparasites cannot extract prey-items

directly from the landscape, and only steal from handlers (see Holmgren 1995).

Kleptoparasites are always successful in stealing from handlers, and such suc-

cessful surprise attacks are commonly observed among birds (Brockmann and

Barnard 1979). Whenmultiple kleptoparasites target the same handler, only one

(randomly selected) is considered successful — thus kleptoparasites compete

exploitatively among themselves. Kleptoparasites displace the handler that they

robbed of prey up to 5 cells away from their location. Having acquired prey, klep-

toparasites become handlers, but need only handle prey for 𝑇𝐻 − 𝑡ℎ timesteps,

where 𝑡ℎ is the time that the prey has already been handled by its previous owner.

Once a kleptoparasite becomes a handler, it can also be targeted by other klep-

toparasites. Unsuccessful kleptoparasites are considered idle, and are counted
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as non-handlers. Movement strategies evolve independently of the competition

strategy, as in scenario 1; however, the optimal movement strategy for foragers

need not be the same as that for kleptoparasites.

In scenario 3, each individual can either act as a forager, or as a kleptopara-

site, depending on its assessment of local conditions. Similar to howmovement

decisions are made based on local cues, individuals process cell-specific envi-

ronmental cues in timestep 𝑡 to determine their competition strategy in the next

timestep as

strategy =
⎧⎪
⎨
⎪⎩

forager, if𝑤𝑃𝑃 + 𝑤𝐻𝐻 +𝑤𝑁𝑁 ≥ 𝑤0

kleptoparasite, otherwise

(4.1)

where the cue preferences𝑤𝑃,𝑤𝐻 and𝑤𝑁, and the threshold value𝑤0, are numeric

values, and heritable between generations (with small, rare, independent muta-

tions). The combination of the cue preferences for competition decisions forms

each individual’s competition strategy. Individuals’ competition strategies may

lead to specialisation as foragers or kleptoparasites (as in scenario 2), or to plastic

behaviour conditioned on local cues. The competition dynamics are the same as

in scenario 2.

Reproduction and Inheritance

Ourmodel considers a population of fixed size (10,000 individuals) with dis-

crete, non-overlapping generations. For simplicity, we assume that individuals

are haploid and reproduction is asexual. In scenarios 1 and 2, individuals only

inherit and transmit their cue preferences (𝑠𝑃, 𝑠𝐻, 𝑠𝑁) which determinemovement

decisions. In scenario 3, individuals also inherit cue preferences for competition

decisions (𝑤𝑃,𝑤𝐻,𝑤𝑁,𝑤0), and transmit them to offspring. The movement and

competition cuepreferences allmutate independently in scenario 3. Each individ-

ual’s number of offspring is proportional to the individual’s total lifetime intake

of resources; hence, resource intake is used as a proxy for fitness. A weighted

lottery (with weights proportional to lifetime resource intake) selects a parent

for each offspring in the subsequent generation (see e.g. Tania et al. 2012; Netz

et al. 2021b). Across scenarios, the cue preferences for movement decisions are

subject to rare, independent mutations (𝜇 = 0.001). The mutational step size

(either positive or negative) is drawn from a Cauchy distribution with a scale of

0.01 centred on zero, allowing for a small number of very large mutations while

most mutations are small. In scenario 2, foragers may infrequently mutate into

a kleptoparasite (or vice versa; 𝜇 = 0.001). In scenario 3, the competition cue

preferences also mutate as described above. Each offspring is initialised at ran-

dom locations on the landscape, leading individuals to experience conditions
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potentially different from those of their parent. We chose this option because it

allows us to focus on adaptive movement strategies, whereas limited dispersal

confounds movement and local adaptation.

Simulation Output andAnalysis

We ran all three scenarios at a default 𝑟𝑚𝑎𝑥 of 0.01, which we present in the

Results, and also across a range of 𝑟𝑚𝑎𝑥 values between 0.001 and 0.05 (see Fig. 4.6

and Supplementary Material Figs. 7 – 9). We initialised the cue preferences with

values drawn from a Cauchy distribution with a scale of 0.01 centred on zero; this

allows a very small amount of variation in the population (see e.g. Fig. 4.1E), and

is equivalent to a single generation of mutation from all preferences initialised

at zero (see Reproduction and Inheritance above). Normalising each individual’s

cue preferences by the sum of the absolute values of all preferences 𝑠𝐼 = 𝑠𝐼/(|𝑠𝑃| +
|𝑠𝐻| + |𝑠𝑁|), for 𝑠𝐼 ∈ 𝑠𝑃, 𝑠𝐻, 𝑠𝑁, makes it possible to visualise individuals on a three-

dimensional trait space of relative preferences bounded by (-1.0: strongly avoid,

+1.0: strongly prefer). With remarkably consistent outcomes across replicates in

each scenario, and as each simulation run producedmassive datasets, we show

the outcomes of three replicates here. More data can be generated and analysed

using the code linked below.

Across scenarios, in each generation, we counted the number of times foragers

were searching for prey, kleptoparasites were searching for handlers, and the

number of timesteps that individuals of either strategy were handling a prey-

item. We refer to the ratio of these values as the population’s ‘activity budget’. We

examined how the population activity budget developed over evolutionary time,

and whether a stable equilibrium was reached. Furthermore, we counted the

population’s mean per-capita intake per generation as a measure of population

productivity.

To understand the evolution of individual movement and competition strate-

gies, we exported the cue preferences of each individual in every generation of the

simulation. We scaled each cue preference by the sumof the absolute values of the

preferences, allowing us to plot individuals in a standardised three-dimensional

trait space of relative cue preferences (with colour as an axis on a two-dimensional

plot). Individuals’ position in this space allowed us to easily visualise and com-

pare variation inmovement strategies within and between competition strategies

and across scenarios.

Scenario 3 competition strategies are determined by four values (3 preferences

and threshold value), and competition decisions are outcomes of the interactions

of these preferences with individuals’ movement decisions and ecological con-

ditions. This makes strategies per se difficult to visualise. We first scaled the
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competition cue preferences and the threshold value as we did the movement

cue preferences. To illustrate variation in the competition strategies evolved, we

presented each individual in representative generations (G = 10, 30, 100, 300,

950) with combinations of two key cues, handler and prey density (each 0 – 5; 36

combinations overall). We summarised the proportion of individuals that would

attempt to steal at each combination of cue values (see Eqn. 1; Fig. 4.4F).

We exported snapshots of the entire simulation landscape at the mid-point of

each generation (𝑡 = 200). Each snapshot contained data on (1) the number of

prey-items, (2) thenumber of handling individuals, and thenumber of individuals

using either a (3) searching forager strategy or (4) kleptoparasitic strategy, on each

cell. We used a subset of the total landscape (602 of 5122 cells) for further analyses

to speed up computation. We determined the availability of direct resource cues

for movement in each cell by calculating the cell-specific item gradient for each

landscape snapshot, as the difference in prey counts between each cell and its

neighbouring cells. For each generation, we calculated the proportion of cells

from which it was possible to sense differences in prey-items, i.e., a neighbouring

cell with either more or fewer items.

A basic prediction of the IFD and the related matching rule is that the number

of individuals on occupied patches should be proportional to patch productivity

(Fretwell and Lucas 1970; Parker 1978; Houston 2008). Patch productivity is

challenging to measure in real world systems, but is among our model’s building

blocks, and we examined the correlation between the number of individuals

(excluding handlers) and the cell-specific productivity 𝑟, expecting large positive
values.

Outcomes from the KleptomoveModel

Scenario 1: NoKleptoparasitism

In scenario 1, foragers deplete prey-items faster than they are replenished, dras-

tically reducing the overall number of prey within 50 generations (Fig. 4.1A). The

population activity budget is split between searching and handling (Fig. 4.1B);

while handling and themean per-capita intake are both initially low, they peak

within ten generations (Fig. 4.1C), as individuals easily acquire prey-items from

the fully stocked landscape in the first few generations. With dwindling prey-

items, fewer searching foragers find prey, and handling as a share of the activity

budget declines to a stable ∼ 45% within 50 generations, and mean per-capita

intake also stabilises (Fig. 4.1C). Across generations, the correlation between the

number of foragers and cell productivity is only slightly positive (Fig. 4.1D). This

is in contrast with the perfect correspondence between resource input rate and

116



Figure 4.1: Eco-evolutionary implications of pure exploitation competition in scenario
1. (A) A population comprised solely of foragers seeking prey on a resource landscape swiftly
depletes initially abundant prey-items within 10 generations (of 1,000 simulated). Foragers
maintain this prey-item scarcity throughout the remaining generations of the simulation, despite
regular resource regeneration (seeG=950). (B)Within20 generations of evolution, the population
reaches an equilibrium in the relative proportion of time spent on searching for prey and handling
prey, and in (C) mean per-capita intake. (D) The number of foragers per cell is only weakly
correlated with cell productivity 𝑟, contrary to the input matching rule of Ideal Free Distribution
theory. (E) A wide range of movement strategies co-exist on the landscape over hundreds of
generations. Individuals may focus on moving up gradients of prey-items (sP ≈ 1.0: prefer),
moving towards successful foragers (handlers), or moving away from unsuccessful foragers which
are potential competitors (sN ≈ red). Panels A, E show a single replicate, panels B, C, D and D
show three replicate simulations with log-scaled X-axes (lines overlap almost perfectly); all panels
are for 𝑟𝑚𝑎𝑥 = 0.01; panel E shows 2,500 individuals.

forager density (the ‘inputmatching rule’), which is a defining property of the IFD

(Parker 1978; Houston 2008). Contrary to standard IFD assumptions, foragers

cannot directly sense the local cell productivity 𝑟; instead they can only use the

(small) number of prey-items available in a cell as a cue for local productivity. A

wide range of movement strategies co-exist on the landscape (see all generations

in SupplementaryMaterial Fig. 2, 6). Some individuals mostly move up gradients

of prey-items (Fig. 4.1E; 𝑠𝑃 ≈ 1.0), somemove primarily towards successful for-

agers (handlers), while others move away from unsuccessful foragers which are

potential competitors (more red 𝑠𝑁).
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Scenario 2: Co-existence of Foragers andKleptoparasites

In scenario 2, with fixed foraging and kleptoparasitism allowed, the spatial

distribution of prey-items at equilibrium is very different from scenario 1. Con-

sumers graze down resource peaks until few prey-items remain on the landscape;

however, within 50 generations the resource landscape recovers with prey abun-

dances higher than in the earliest generations (Fig. 4.2A). This is because of the

emergence of kleptoparasites (Fig. 4.2B): in early generations, kleptoparasites are

rare, and the activity budget, the mean per-capita intake, and the distribution of

consumers over the landscape, are similar to scenario 1. As resources are depleted

and kleptoparasite-handler encounters becomemore common than forager-prey

encounters, kleptoparasitism becomes the majority strategy (a stable ∼70% of

the population; see Fig. 4.2B), and searching for handlers to rob becomes the

commonest activity. However, the high frequency of this activity and the low

frequency of handling, indicate that few kleptoparasites are successful at robbing

handlers.

With few foragers, few prey-items are extracted from the landscape, which

recovers beyond its initial prey abundance within 50 generations (Fig. 4.2A). As

fewer prey-items are extracted overall, mean per-capita intake also declines from

an initial peak (Fig. 4.2C). Despite the strong spatial structure of the resource

landscape within 50 generations, the correlation between consumers (of either

strategy) and cell productivity remainsweak or zero across generations (Fig. 4.2D).

This may be partially explained by the ecology of kleptoparasitism: foragers are

regularlydisplacedbykleptoparasites, andkleptoparasitesmust themselvesmove

to find handlers.

There is a sharp evolutionary divergence of movement strategies between for-

agers and kleptoparasites. While both foragers and kleptoparasites evolve to

prefer prey and avoid non-handlers, their response to handlers is very differ-

ent (Fig. 4.3; see also Supplementary Material Fig. 3, 5). Kleptoparasites very

rapidly evolve a strong preference for moving towards handlers, which are their

primary resource (Fig. 4.3). In the absence of kleptoparasites, foragers would

also evolve a similar preference (Fig. 4.1E), but, with kleptoparasites common

in the population, foragers converge upon a handler-avoiding strategy (Fig. 4.3).

This completes the explanation for why consumers do not match landscape pro-

ductivity: foragers evolve strategies to avoid high productivity areas (which are

more likely to have many handlers), while kleptoparasites evolve strategies to

find handlers (which need not be on high productivity cells).
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Figure 4.2: Eco-evolutionary implications of the coexistence of foragers andkleptopara-
sites followingfixed competition strategies in scenario 2. (A) Populations with both foragers
and kleptoparasites drastically deplete the initially well-stocked resource landscape by gener-
ation 10; however, prey densities recover strongly by generation 50, even beyond the densities
in generation 1. (B) A surprisingly stable equilibrium between the forager and kleptoparasite
strategies is reached within 30 generations, with the relative frequency of kleptoparasites (orange
line) first dropping to very low levels but later recovering to reach a high level (∼ 70%) in all three
replicates. Consequently, at equilibrium, only about 10% of individuals are foragers searching
for prey, 50% are kleptoparasites attempting to steal from handlers, and 40% are handlers pro-
cessing prey-items (either foragers or kleptoparasites). (C)When kleptoparasites are rare, the
population intake rate exhibits the same pattern as in scenario 1, dropping to a lower level with
the emergence of kleptoparasites. Naturally, there is an increase in the proportion of time spent
on stealing attempts (red line – B), and a corresponding decrease in prey seeking (by searching
foragers; blue line – B), and handling (green line – C). (D)Neither foragers nor kleptoparasites
follow the input matching rule, and the correlation of their abundance with cell productivity 𝑟 is
zero at equilibrium. PanelA shows a single replicate, while B, C,D andD show three replicates
with log-scaled X-axes; all panels are for 𝑟𝑚𝑎𝑥 = 0.01.

Scenario 3: Condition-dependent Kleptoparasitism

When individuals are allowed to choose their competition strategy (foraging

or kleptoparasitism) based on local environmental cues, the distribution of prey-

items is substantially different from the two previous scenarios (Fig. 4.4A). Ini-

tially, individuals deplete the resource landscape of prey-items within ten gen-

erations. By generation 50, the resource landscape recovers some of the spatial

structure of early generations, but prey-item abundances do not match the recov-

ery seen in scenario 2. This is because unlike scenario 2, individuals search for
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Figure4.3:Rapiddivergenceofmovementstrategiesbetweenforagersandkleptoparasites
in scenario2. In scenario 2, kleptoparasites rapidly diverge (within 10 generations) from foragers
in their movement strategy, clustering around sH = 1.0: a handler-tracking strategy. This strategy
is stably maintained throughout the simulation (G = 100, 300, 950). Foragers retain substantial
diversity in movement strategies for many generations (see G = 100), but unlike scenario 1, tend
to be repelled (relative sH < 0), as well as attracted to handlers (relative sH > 0). Over time, foragers
adopt a strategy that helps them avoid all other individuals (G = 300, 950). A few individuals
sporadically adopt a movement strategy associated with the opposite competition strategy; this is
most likely due to mutations in the competition strategy, rather than a newmovement morph
within either foragers or kleptoparasites. At the evolutionary equilibrium then, social information
(either sH or sN) is the strongest component of all individuals’ movement strategies. All panels
show 2,500 individuals (25% of total) from the same simulation replicate (𝑟𝑚𝑎𝑥 = 0.01), and earlier
generations are ancestors of later generations.

prey more often and steal less (at or below 25%; compare Figs. 4.4B and 4.2B),

preventing a full recovery of the resource landscape. Consequently, mean per-

capita intake stabilises (after an initial spike, as in scenarios 1 and 2) within ten

generations to a level similar to scenario 1 (Fig. 4.4C). While not as strong as

predicted by IFD theory, the correlations between consumer abundance and cell

productivity are weakly positive (Fig. 4.4D).

The weak input matching is likely because all individuals prefer to move up

gradients of prey density, and towards handlers, which aremore likely to be found

on resource peaks (Fig. 4.4E; see also Supplementary Material Fig. 4, 7). Using

conditional foraging strategies, individuals are able to switch between resource

types (prey and handlers) depending on which is more profitable (Emlen 1966)

(‘opportunistic kleptoparasitism’; Fig. 4.4F; see Supplementary Material Fig. 6).

All individuals would choose to steal when handlers are present, even when prey
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items are more common. Indeed, about 40% of individuals would choose to

steal even when prey are abundant and there are no handlers at all, showing

the prevalence of a ‘fixed kleptoparasite’ clade similar to scenario 2. In a further

parallel with scenario 2, about 70% of individuals have an intrinsic bias towards

kleptoparasitism, i.e., they would by default attempt to steal when there are no

cues to inform their decision (Fig. 4.4F: 𝑃 = 0,𝐻 = 0).

Movement Strategies onDepleted Landscapes

Orientingmovement towards resources (Nathan et al. 2008: where tomove) can

be a challenge in a system with low densities of discrete prey-items, because the

local prey densitymay provide very limited information about local productivity.

In our model, prey-depletion leads parts of the resource landscape to become

‘clueless regions’ (Perkins1992),where foragers cannotmakedirectedmovements

based on prey-item abundances alone, as all neighbouring item abundances

are identical (see white areas in Fig. 4.5A; A1: scenario 1, A2: scenario 2, A3:

scenario 3). At the beginning of all three scenarios, about 75% of landscape cells

have a different number of prey-items from the cells around them; these are

primarily cells with an intermediate 𝑟, which havemore prey than peripheral cells

of resource peaks, but fewer prey than the central cells. This proportion rapidly

declines to a much lower value within 10 generations in all three scenarios.

The ‘cluelessness’ of the landscapes develops differently across scenarios on

evolutionary timescales (Fig. 4.5B). In scenario 1, the proportion of cells with a

different number of items in the neighbourhood is initially very high (Fig. 4.5A1).

This proportion rapidly declines to ∼25%within 10 generations, as foragers de-

plete most prey-items, making most of the landscape a clueless region. In this

context, foragers evolve to move towards handlers, with > 75% of individuals

showing a preference for handlers within 100 generations (Fig. 4.5B1). Forager

preference for handlers may be explained as the sensing of a long-term cue of

local productivity. Since handlers are immobilised on the cell where they find

a prey-item, handler density is an indirect indicator of cell 𝑟, and due to spatial
autocorrelation, also of the 𝑟 of bordering cells.

Scenario 2 landscapes develop similarly to scenario 1 in early generations

(Fig. 4.5A2). However, within 50 generations, most cells bear items as extraction

is reduced, with differences among cells according to their 𝑟 (see also Fig. 4.2A).
Thus > 75% of cells have a different number of items from neighbouring cells

(Fig. 4.5A2 – panel gen: 50, 5B2). Unlike scenario 1, the rapid increase in handler

preference is drivenby kleptoparasites becoming themajority strategy (see above).

Scenario 3 is similar to scenario 2, except that only about half of all cells have a

different number of prey-items from neighbouring cells (Fig. 4.5A3, 5B3). Here,

the rapid evolution of a handler preference in movement decisions cannot be
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Figure 4.4: Eco-evolutionary implications of conditional foraging strategies in scenario
3. (A) The initially well-stocked resource landscape is rapidly depleted within 10 generations,
yet within 50 generations, prey abundances recover on many cells, though not to the extent
of scenario 2. The local density of individuals on occupied cells is shown as coloured crosses.
(B) By generation 30, the proportion of time spent searching (blue line), handling (green line),
and stealing prey (red line) reach an equilibrium that differs somewhat across replicates, but
(C) the total intake of the population reaches the same equilibrium value in all three replicates.
(D) The correlation between the local density of individuals on a cell, and its productivity 𝑟 is
stronger than in scenario 2. (E) From an initially high diversity of movement strategies, there is a
rapid convergence (within 30 generations) of all individuals to strongly prefer moving towards
successful foragers, or handlers, nearly to the exclusion of all other movement cues. This handler-
tracking strategy once established is maintained (Gen = 300, 950). (F) Population competition
strategies are more varied. While most individuals will choose to forage as prey density increases,
about 40% of individuals attempt to steal even when prey is abundant and handlers are scarce.
All individuals will steal when handlers are available. Panels A, E show a single replicate, while B,
C andD show three replicates, F shows the mean across replicates; all panels are for 𝑟𝑚𝑎𝑥 = 0.01.

assigned a clear cause, since handlers are both a potential direct resource as well

as indirect cues to the location of productive cells.
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Figure 4.5: Uninformative prey densities and the evolution of social information as an
alternative movement cue. (A1, A2, A3) On cells coloured green, local prey densities are
informative for movement, as the central and neighbouring cells have different prey densities.
While differences in local prey densities provide informative cues for ‘adaptive’ movement in
early generations, this is much less true once the resource landscape is depleted of prey-items
(depending on the scenario). (B1, B2, B3) The proportion of cells where differences in local prey
densities provide informative movement cues (green line), and the proportion of individuals
preferring tomove towards handlers (blue line), whose presencemay be used as an alternative cue
for movement towards higher-productivity areas of the landscape. In (B2) representing scenario
2, this proportion is shown separately for foragers (blue line) and kleptoparasites (red line). While
panels in (A) show a single representative replicate for 𝑟𝑚𝑎𝑥 = 0.01, panels in (B) show three
replicates.

Effect of Landscape Productivity

The prey-item regrowth rate that characterises the peaks of the resource land-

scape (𝑟𝑚𝑎𝑥) is a measure of the productivity of the resource landscape overall.

Having thus far focused on scenarios with 𝑟𝑚𝑎𝑥 = 0.01 (corresponding to a peak

production of 4 food times per consumer lifetime), we find that, not unexpect-

edly, the value of 𝑟𝑚𝑎𝑥 has a marked effect on evolved population activity budgets,

mean per capita intake, and even evolved strategies. The frequency of foraging
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reduces with 𝑟𝑚𝑎𝑥 in scenarios 1 and 3; this is caused bymore frequent acquisition

of prey-items (as regrowth keeps pace with depletion), which results in a greater

frequency of handling rather than foraging.

In scenario 2 however, the frequency of handling is relatively unaffected by in-

creasing 𝑟𝑚𝑎𝑥 (Fig. 4.6A). The difference between scenarios 2 and 3 has to do with

the change in the frequency of kleptoparasitism (Fig. 4.6B). In scenario 2, klep-

toparasitism forms > 75% of all activities at low 𝑟𝑚𝑎𝑥, and is muchmore common

than in scenario 3 populations at the same regrowth rate. However, at relatively

high 𝑟𝑚𝑎𝑥 (0.03), the fixed kleptoparasitic strategy goes extinct. This is because at

high 𝑟𝑚𝑎𝑥, forager-prey encounters aremore common than kleptoparasite-handler

encounters, in both early (< 10) and later generations (> 50). Consequently, klep-

toparasites have relativelymuch lowerfitness than foragers, anddonot proliferate.

Thus at high 𝑟𝑚𝑎𝑥, a scenario 2 population is nearly identical to a scenario 1 popu-

lation; while some kleptoparasites may be seen in later generations, these occur

most likely due to ephemeral mutations in the forager strategy.

In scenario 3, kleptoparasitism persists at low frequencies even at the highest

regrowth rates (Fig. 4.6B); thus some foragers lose time in extracting items which

are then stolen from them. Consequently, while populations in all three scenarios

achieve very similarmean per-capita intakes at low 𝑟𝑚𝑎𝑥, at intermediate regrowth

rates (0.01, 0.02), conditionally kleptoparasitic populations achieve a higher

mean per-capita intake than populations using fixed strategies. Only at high 𝑟𝑚𝑎𝑥,

when fixed strategy populations effectively convert to purely forager populations,

do they achieve a higher intake than conditional strategy populations (Fig. 4.6C).

Contextualising the Outcomes of the KleptomoveModel

Our spatially-explicit individual-based model implements the ecology and

evolution of movement and foraging decisions, as well as resource dynamics, in

biologically plausible ways, and offers a new perspective on the distribution of

animals in relation to their resources under different scenarios of competition.

First, individuals moving with a limited perception range and competing only by

exploitation, evolve movement strategies for both direct and indirect resource

cues (prey-items and handlers, respectively). Regardless, on a resource landscape

with discrete prey-items, large areas may become devoid of anymovement cues,

leading to a mismatch between individual distribution, prey-item distribution,

and landscape productivity. Second, interference competition in the form of

kleptoparasitism rapidly establishes itself on landscapes where stealing is more

time-efficient than searching for prey, even when such interference is a fixed

strategy and kleptoparasites cannot forage for prey. This rapid increase in klep-

toparasitismas a strategy is accompanied by the divergent evolution ofmovement
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Figure 4.6: Landscape productivity strongly affects scenario outcomes. (A) The proportion
of time spent searching for food decreases with increasing 𝑟𝑚𝑎𝑥 in scenarios 1 and 3 but remains
relatively stable within scenarios. This is partly due to a higher proportion of time spent handling
at higher prey densities. (B) The proportion of time spent searching for handlers (in order to steal
prey from them) also decreases with increasing 𝑟𝑚𝑎𝑥. In scenario 2, kleptoparasites go extinct
for 𝑟𝑚𝑎𝑥 values above 0.025. (C) At low productivity, the average intake is similar in all three
scenarios. For higher 𝑟𝑚𝑎𝑥 values the average intake rate is lowest in scenario 2, until 𝑟𝑚𝑎𝑥 is larger
than 0.025 and kleptoparasites go extinct (leading to the same kind of population as in scenario 1).
At high 𝑟𝑚𝑎𝑥, the average intake rate in populations with conditional kleptoparasites (scenario 3)
is substantially lower than in populations without kleptoparasitism. All panels show conditions at
G = 1,000; error ranges where present show standard deviation around values; some error ranges
are too small to be visible.

strategies that favour moving towards handlers, which are the primary resource

of the kleptoparasites. In this sense, obligate kleptoparasitesmay be thought of as

forming a higher trophic level, with handlers as their prey. Third, when foraging

strategy is allowed to be conditional on local cues, (1) the population’s mean per

capita intake is significantly higher than that of a population with fixed strategies,

and (2) unlike fixed strategy populations, kleptoparasitism as a strategy does

not go extinct on high-productivity landscapes. However, across scenarios, indi-

viduals are broadly unable to match the productivity of the resource landscape,

contrary to the predictions of IFD basedmodels, which predict input matching

for some (Parker and Sutherland 1986; Holmgren 1995; Hamilton 2002), or all of

the competitive types (Korona 1989).

Comparisonwith ExistingModels

Existing models of competition andmovement impose fixedmovement rules

on individuals to mimic either ideal or non-ideal individuals (Vickery et al. 1991;

Amano et al. 2006; Cressman and Křivan 2006; Beauchamp 2008; Stillman and

Goss�Custard 2010; White et al. 2018b). When individual competitive strategies
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are included in models, they represent differences in competitive ability (e.g.

Parker and Sutherland 1986; Holmgren 1995; Hamilton 2002), or a probabilistic

switch between producing and scrounging (Beauchamp 2008). In contrast, our

model allows individuals’ movement (and competition) decisions to be adaptive

responses to local environmental cues. Similar to Getz et al. (2015; 2016) and

White et al. (2018b), our individuals choose from among the available movement

options after weighing the local environmental cues, similar to step selection

functions (Fortin et al. 2005; Avgar et al. 2016; White et al. 2018b). Local environ-

mental cues are constantly changing, as wemodel discrete, depletable prey-items,

contrasting with many IFD models (Tregenza 1995; Amano et al. 2006). This

allows for a more plausible, fine-scale consideration of exploitation competition,

which is often neglected, and allows the cues sensed by individuals to strongly

structure the distribution of competitors (see below).

Adaptive responses must have an explicit evolutionary context, and consider

multiple generations of the population. We follow Beauchamp (2008) and Getz

et al. (2015) in allowing the cue preferences that decide movement, and varia-

tion therein, to be the outcomes of natural selection. However, instead of using

‘evolutionary algorithms’ (Beauchamp 2008; Getz et al. 2015; 2016) to ‘optimise’

individual movement rules, we consider a more plausible evolutionary process:

(1) Instead of allowing the fittest 50% of the population to replicate, the number

of offspring are proportional to individual fitness. (2) The cue preferences are

subject to mutations independently, rather than subjecting all preferences of an

individual to simultaneous mutation. (3) Finally, we avoided ‘simulated anneal-

ing’, which adapts the mutation rate or the mutational step sizes to the rate of

evolutionary change. Instead we drewmutation sizes from a Cauchy distribution,

so that most mutations are very small, but large-effect mutations do rarely oc-

cur throughout the simulation. Similarly, rather than determining competition

strategy probabilistically or ideally (Vickery et al. 1991; Beauchamp 2008; Tania

et al. 2012), our individuals’ competition decisions are also shaped by selection

(in scenarios 2 and 3).

Evolution ofMovement Strategies Using Social Information

In scenario 1, depletion of discrete prey can leavemany areas empty of prey-

items: in such areas, movement informed by a resource gradient is impossible,

and individuals maymove randomly (Perkins 1992). This lack of direct resource

cues for locally optimal movement might be among themechanisms by which

unsuitable ‘matrix’ habitats modify animal movement on heterogeneous land-

scapes (Kuefler et al. 2010). When individuals do not sense resource gradients,

the presence of more successful conspecifics may indicate a suitable foraging

spot (local enhancement; Giraldeau and Beauchamp 1999; Beauchamp 2008;
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Cortés-Avizanda et al. 2014). The presence of unsuccessful individuals, mean-

while, may signal potential costs from exploitation or interference competition.

This selects for movement strategies incorporating the presence and condition of

competitors into individual movement decisions, or social movement strategies

(see e.g. Guttal and Couzin 2010). Consequently, consumer aggregation— often

explained by invoking external costs such as predation (Krause and Ruxton 2002;

Folmer et al. 2012) — could also be the outcome of movement strategies that

have evolved to trade competition costs for valuable social information on the

underlying spatial structure (here, 𝑟) of uninformative landscapes (Folmer et al.

2010; Cortés-Avizanda et al. 2014).

Individual Variation inMovement Strategies

Our movement strategies, comprising preferences for local ecological cues,

may lead individuals to move in ways that are potentially unique to each individ-

ual. These strategies may not maximise their intake over short timescales (a few

timesteps), but their coexistance implies equivalent fitness overall. This makes

them consistent with prevalent ideas about consistent individual differences in

behaviour, or ‘animal personalities’ (Wolf andWeissing 2012; Laskowski and Bell

2013; Spiegel et al. 2017; Shaw 2020). In scenario 1, the persistence of multi-

ple movement strategies across generations indicates that they have equivalent

fitness (see Getz et al. 2015), and that there are multiple ways to navigate a het-

erogeneous environment (Wolf andWeissing 2010; Shaw 2020). Such differences

may help reduce competition as individuals make subtly different movement de-

cisions when presented with the same cues (Wolf andWeissing 2012; Laskowski

and Bell 2013). Interestingly, scenario 3 has the least individual variation in

movement rules, presumably because plasticity in competition strategy reduces

the need for such diversification (Pfennig et al. 2010).

Scenario 2 cautions that (1) Individual variation may only be evident when ac-

counting for the main driver of movement decisions (𝑠𝐻 or 𝑠𝑁; see Supplementary

Material Fig. 8 for scenario 3 as well). (2) Spatial context determines whether

individual differences inmovement strategy lead to functional variation inmove-

ment outcomes. Subtle variation in relative prey density preferences (𝑠𝑃) could
be revealed if individuals were measured in isolation, and could lead to differ-

ences inmovement paths (given a continuous gradient in prey cues). However, in

natural settings with substantial collective behaviour, different social movement

strategies (correlated with foraging competition strategy) would be the primary

driver of movement. Overall, then, (a)measuring movement behaviour in set-

tings that correspond to animals’ evolutionary context, and (b) accounting for

movement-competition strategy correlations, are both key when studying how

individual differences translate to functional consequences.

127



Competition Strategies and the Ideal Free Distribution

IFDmodels predict that individual movement should result in consumer dis-

tributions tracking the profitability of resource patches (Fretwell and Lucas 1970;

Parker 1978), with dominant competitive types (including kleptoparasites) mo-

nopolising the best patches (Parker and Sutherland 1986; Holmgren 1995; Hamil-

ton 2002), though Korona (1989) predicts otherwise. In scenarios 2 and 3, klep-

toparasitic individuals unsurprisingly and rapidly evolve to track handlers (a

direct resource), while avoiding non-handlers (potential competitors). However,

these evolved rulesdonot leadkleptoparasites tooccupy thebest cells aspredicted

by Parker and Sutherland 1986, Holmgren 1995, and Hamilton 2002. Across our

scenarios (including scenario 1), local population density is only weakly corre-

lated with cell productivity, and is not stronger than if individuals were moving

randomly (see Supplementary Material Fig. 1). In scenario 2, this departure from

predictions is driven by the contrastingmovement rules of foragers, which evolve

to avoid handlers as well as non-handlers, both of whichmight be kleptoparasites

(cryptic interference; seen in interference-sensitive shorebirds Bijleveld et al.

2012). Thus, foragers likely avoid resource peaks, which are more likely to have

handlers (due to the higher probability of forager-prey encounters Parker and

Sutherland 1986; Holmgren 1995; Hamilton 2002). Fixed kleptoparasites can-

not extract prey themselves, andmust move off resource peaks to track and rob

handlers (similar to Parker and Sutherland 1986), breaking the link between indi-

vidual density and productivity. This shows the pitfalls of simplistically linking

current ecological conditions with population distributions without considering

competitive strategies or evolutionary history.

Constraints on Competition Strategies

Foraging strategies involving specialisation on a resource type are expected to

be constrained by the availability of that resource. Thus kleptoparasitism, seen

as a prey-choice problem, should be constrained by the density of targets (Ens

et al. 1990). In scenarios 2 and 3, more kleptoparasitism should be expected

with increasing 𝑟𝑚𝑎𝑥, as prey and consequently, handlers, are expected to bemore

abundant. Instead, kleptoparasitism declines with increasing 𝑟𝑚𝑎𝑥, in line with

Emlen (1966), who predicted that the commoner food type (prey) rather than the

more efficiently exploited one (handlers) should be preferred. This prey choice

problem, playing out at evolutionary scales, leads kleptoparasites in scenario 2

to go extinct when prey are very common at high 𝑟𝑚𝑎𝑥. At stable population den-

sities, the persistence of fixed kleptoparasitism depends on their intake relative

to foragers. Modelling discrete prey-items and individuals in a spatial context,

then, leads to the finding that obligate kleptoparasitism is only a viable strategy
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when forager-prey encounters are less common than kleptoparasite-handler en-

counters. Reducing the relative profitability of kleptoparasitism in other ways—

such as imposing a cost on kleptoparasitic attacks for the initiator, or reducing the

probability of success (currently, 1.0) —would also lead to a reduced incidence of

kleptoparasitism, and eventual extinction even on less productive landscapes. In

scenario 3, about 40% of individuals choose to attempt to steal even when prey

are available and handlers are not. This suggests a more realistic proportion of

consistently kleptoparasitic individuals among populations with flexible foraging

strategies. Many seabirds, which forage for prey when they are super-abundant,

but also readily harass other birds for prey, are a good example (Brockmann and

Barnard 1979). Finally, comparing across regrowth rates shows why possibly

cryptic behavioral complexity should be considered in predictions of the long-

term effect of environmental change on populations. While both scenario 1 and

2 populations appear identical at high 𝑟𝑚𝑎𝑥, even a small decrease in environ-

mental productivity could lead to an abrupt drop in per-capita intake — and

potentially, strongly reduced growth or survival — for fixed strategy populations

due to unexpected, emergent kleptoparasitism.

Comparisonwith ConceptualModels

Classical models of animal movement and foraging largely consider homoge-

neous populations and environmental conditions, andmovements that are made

either optimally or at random. While these models provide powerful insights,

individual-basedmodels such as ours have the advantage that they can accommo-

date individual variation, local environmental conditions, and the mechanisms

of movement and decision-making. Individual-based modeling has the obvious

drawback that numerous specific assumptions have to be made, which might

not all be founded on empirical evidence, andmight seem to limit the generality

of the conclusions. Nevertheless, as long as these models are not mistaken for

attempts at faithful representations of real systems, their exploration provides

valuable perspectives on the conceptual models that have dominated theory in

the past. After all, traditional models also include numerous assumptions (the

spatio-temporal structure, the timing of events, the distribution and inheritance

of traits) that are usually not stated and therefore less visible. For the future, we

envisage pluralistic approaches, where both types of model are applied to the

same research question. Only comparing the outcomes of diverse models will

reveal which conclusions and insights are robust, and which reflect peculiarities

of the model structure. Only such model comparison can tell us whether and

when simple models produce general insights, where simple models fail, and

whenmechanisms can explain initially counterintuitive observations, such as

the attraction to competitors that we observed in our study.
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Roles for Individual-BasedModels in AnimalMovement Ecology

Linking individual-based models with empirical data is difficult, and is still

rarely used (see works tailored to management: Stillman and Goss�Custard 2010;

Diaz et al. 2021). Animal tracking technology is only on the cusp of allowing us to

track entire populations (though small ones), and classifying their behaviour at

the fine temporal scales of animal decision-makingNathan et al. in press. Science;

see e.g. Lieber et al. 2021; Sankey et al. 2021. Classifying dyadic and collective be-

haviour from animal tracking is especially challenging (Sankey et al. 2021; Vissat

et al. 2021); this makes the detection of rapid competitive interactions in large

populations unlikely. Instead, experimental approaches may reveal movement

strategies that reduce competitive interactions (Vahl et al. 2005a,b; Rutten et al.

2010a; Bijleveld et al. 2012). However, consistent behaviour in cue-poor captive

environments does not always translate to consistency in natural settings with

abundant resource cues (Carter et al. 2013a).

Animal movement ecology takes an explicitly individual-based approach, cen-

tred around individual decisions (Nathan et al. 2008). This makes individual-

based models a good choice when seeking general insights into the evolutionary

ecology of animal movement strategies (see e.g. Getz et al. 2015), whose ulti-

mate causes are otherwise difficult to study empirically. Modelling mechanistic

movement decisions has substantial consequences for ecological outcomes (e.g.

Mueller et al. 2011; White et al. 2018b; Scherer et al. 2020), yet few individual-

based models in animal movement are mechanistic (see review in: DeAngelis

and Diaz 2019), and even fewer models include evolutionary dynamics (but see

Getz et al. 2015; 2016; Netz et al. 2021b). Yet explicitly modelling both ecological

interactions and evolutionary dynamics, as we do here, can reveal surprising

outcomes ranging from innovative predator-prey strategies (Netz et al. 2021b) to

sympatric speciation (Getz et al. 2016).

The use of resource- and step-selection functions in mechanistic modelling

(see White et al. 2018b) gives empirical movement ecologists a familiar starting

point in individual-based modelling. Simulating an animal’s potential space-use,

conditional on environmental data (similar to our cues), and using selection coef-

ficients estimated from tracking data (our cue preferences), is already accepted

in movement ecology, and follows our grid-based approach (Avgar et al. 2016;

Signer et al. 2019; Avgar et al. 2020; Fieberg et al. 2021). It is relatively easy to

implement movement decisions in continuous space, by sampling cues at dis-

crete locations and (1) choosing among them, or (2) translating these cues into a

movement distance and turning angle. The second approach would require more

complex functions with more coefficients (preferences), such as neural networks

(Mueller et al. 2011), and this could make it difficult to interpret the evolved

movement strategies. Models could implement survival and reproduction (the
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key ingredients of natural selection), as well as other demographic processes, and

reproduction and inheritance can be incorporated in a more realistic manner.

Wecall for a substantial increase inmechanistic, evolutionary, individual-based

modelling inanimalmovement ecology. Adding realistic ecological andevolution-

ary dynamics on top of current empirical work is key to transformingmovement

ecology into a more applied, predictive discipline. For example, by allowing habi-

tat selection coefficients fromanimal-tracking studies to undergo even short-term

selection on projected landscapes from climate modelling, such models could

help explore population changes in movement strategies. This approach would

require very accurate estimation of the fitness outcomes of movement — no easy

task. Consequently, individual-based models are not (yet) intended to be ‘fit’

to empirical movement data. Rather, they can provide valuable perspective on

existing population-level models, and could be used to define the envelope of

possibilities for howmovement strategies could evolve in dynamic environments.

-.-
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Supplementary Information

forChapter4

Evolutionary Ecology of RandomMovement

We ran our model on a fourth scenario: randommovement. In this scenario,

the landscape is set up as in our first three scenarios (see Figure panel A). The

prey-item handling dynamics are the same as well, and if individuals, which

can choose their competition strategy depending on environmental conditions

(as in scenario 3), ever encounter a handler and choose to steal from it, they

can do so. Individuals have heritable, evolving preferences for environmental

cues, as in all our previous scenarios. Themajor change in this scenario is that

individuals cannot actually perceive any environmental cues, and are essentially

then, moving to random locations in their neighbourhood. This scenario serves

as a useful null model for what one should expect when directed movement is

not possible, or has no bearing on fitness.

1. In contrast to scenario 1, the resource landscape regenerates muchmore

strongly, suggesting that despite the paucity of movement cues in scenario

1, foragers are still capable of finding their way to isolated prey-items, and

consuming them (panelA).

2. This scenario reveals that directed movement is, understandably, abso-

lutely key to kleptoparasitism. When individuals cannot move towards

handlers, the low density of foragers on the landscape, only some of which

will be handling an item at any one time, means that encountering a han-

dler is essentially impossible. As expected then, the number of stealing

attempts drops to zero within only three generations, and all individuals

thereon are foragers (panel B).

3. Despite being unable to move towards resources, the population’s mean

intake is comparable to scenarios 1 and 3, and actually higher than in

scenario 2. This highlights the cost that fixed-strategy kleptoparasitism

imposes at a population wide level (panel C).

4. The near-zero correlation between consumer abundance and resource pro-

ductivity is unsurprising (panelD). Nonetheless, it shows that regardless
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of whether individuals are moving with (relatively) sophisticated move-

ment strategies, or at random, they are very far from following the ideal

free distribution’s input matching rule. This also confirms the true cost of

resource landscape depletion in scenario 1: the loss of prey-item gradients

with which to orient movement leaves individuals navigating a clueless

landscape, on which they simply cannot find the way to areas of high pro-

ductivity.

5. Finally, the evolution of movement strategies, when they are not actually

under selection, supports our findings of strong selection onmovement in

the first three scenarios (panel E).

Effect of Local Dispersal

In order to focus on adaptive movement strategies, we chose to implement

large dispersal distances in our default simulation setup, which we refer to as

‘global’ natal dispersal. Under global dispersal, offspring are homogeneously

distributed over the entire landscape (dispersal radius = 512). Our results are

not changed in any way when dispersal is muchmore strongly localised, which

we refer to as simply ‘local’ natal dispersal. In this implementation, the natal

dispersal distance is comparable in magnitude as the distance between resource

peaks. If offspring dispersal is more local, the spatial population dynamics may

become more intricate, and kin competition or local adaptation may become

influential. We therefore ran the simulations presented in the main text also

under local dispersal (dispersal radius = 2).

In summary, scenarios 1 and 3 yield similar results under local as under global

dispersal, while scenario 2 shows some interesting dynamics typical of reaction-

diffusion systems. In scenario 1 (see Fig. S13), the resource landscape plots A,

the activity budget and intake plots B and C, as well as the evolved movement

strategies E exactly match the simulation results shown in Figure 1 of the main

text. Only the correlations between number of foragers and cell productivity

are higher under local dispersal than under global dispersal (panel D). This is

a straightforward consequence of local dispersal, where individuals occurring

onmore productive cells have a higher intake rate and therefore producemore

offspring than individuals on less productive cells. Thus, under local dispersal

many agents already start out onmore productive cells. This does not seem to

impact movement strategies. The same is true for scenario 3 (Fig. S14): After

the initial depletion of the landscape, kleptoparasitic behavior spreads, and the

landscape is somewhat replenished again. Also here, the landscape snapshots,

the activity budget, as well as the intake plot and the evolvedmovement strategies

match the global dispersal case. The difference in competition strategy (panel F)
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Figure 4.7: The evolutionary ecology of randommovement serves as a useful baseline
against which to compare other scenarios. (A) Individuals deplete the landscape (𝑟𝑚𝑎𝑥 =
0.01) at random, allowing it to regenerate more than scenario 1, yet less than scenario 2. (B)
Kleptoparasitism as a strategy very rapidly goes extinct, as individuals cannot move towards
handlers, and encountering a handler at random is very unlikely. (C) Surprisingly, moving at
random yields a similar mean per-capita intake as in scenarios 1 and 3, and actually better
than scenario 2. (D) Randommovement leads, unsurprisingly, to no correlation with landscape
productivity. (E)Whenmovement strategies are not under selection, individuals occupy a large
area of the potential strategy space, including negative values of 𝑠𝑃 (which is not shown here).
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corresponds to the observed bistability (compareMain Text Fig. 6). Again, the

correlation betweennumber of foragers and cell productivity is higher under local

dispersal than under global dispersal, in the latter averaging in late generations

around 0.1, and in the former around 0.2.

Scenario 2 is the only onewherewe observed amarked difference between local

and global dispersal (see Fig. S15). As soon as kleptoparasites occur, they spread

and become locally abundant, driving foragers to local extinction. The kleptopar-

asites themselves then wither away due to a lack of foragers to steal from, after

which foragers may colonize the area once again. This spatial instability repeats

itself over wide parts of the landscape, driven by the extinction, recolonization

and diffusion of foragers and kleptoparasites. Kleptoparasites and foragers here

effectively form a reaction-diffusion system. Snapshots of this dynamic pattern

can be seen in Fig. S15A. As a consequence, the proportions of kleptoparasites

and foragers, as well as the total per capita intake of the population fluctuate

widely (panels B and C). The correlations between individual densities and cell

quality lie around zero and are therefore not much different from the results

observed under global dispersal (Main Text Fig. 2D). An interesting contrast with

global dispersal is to be found in the movement strategies. While kleptoparasites

have similar preferences under global and local dispersal, foragers have much

stronger item preferences under local dispersal. Due to the pattern of extinction

and recolonization under local dispersal, there are parts of the landscape not only

rich in food items, but also free from kleptoparasites, and thus a strong preference

for items becomes beneficial.

-.-
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Figure4.8:Theeffectofstrongly localiseddispersal inscenario1. (A)Foragers swiftly deplete
the resource landscape and maintain item scarcity throughout the rest of the simulation, just
like under global dispersal. Items and agents are distributed in proportion to cell productivity, 𝑟.
The population quickly reaches an equilibrium in its (B) activity budget and (C)mean per-capita
intake, that is identical to global dispersal. (D) The number of foragers per cell is more positively
correlated with cell productivity under strongly localised (‘local’) dispersal, compared with global
dispersal. (E) The same wide range of movement strategies observed under global dispersal exists
under local dispersal as well.
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Figure 4.9: The effect of strongly localiseddispersal in scenario 3. (A) Individuals swiftly
deplete the resource landscape, but prey abundances recover with the rise of kleptoparasitism,
as is observed under global dispersal. Items and agents are distributed in proportion to cell
productivity, 𝑟. (B) By generation 30, the proportion of time spent searching (blue line), handling
(green line), and stealing prey (red line) reach values in the range of the ones observed under
global dispersal. (C) Themean per-capita intake drops after the initial peak, and then recovers
slightly, identically to global dispersal. (D) The number of foragers per cell is more positively
correlated with cell productivity under local than under global dispersal. (E)Movement strategies
concentrate around a strong preference for handlers, and (F) individuals tend to steal even when
there are no handlers and less than 3 prey items available. This falls into the range of variation
observed between replicates under global dispersal.
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Figure 4.10: The effect of strongly localised dispersal in scenario 2. (A) Foragers initially
deplete prey items, but with the rise of kleptoparasistism, the resource landscape becomes very
heterogeneous, with some areas densely populated and scarce in prey items, and others without
consumers and fully stocked with items. This pattern is produced by the local dynamics of
kleptoparasites and foragers: Kleptoparasites becomemore commonwhere foragers are common,
until the latter go locally extinct. Thereupon also the kleptoparasites vanish, and prey items
replenish until foragers are reintroduced via diffusion. (B) Proportions of kleptoparasitses and
foragers, as well as (C)mean per-capita intake fluctuate greatly. (D) Cell quality and number
of individuals are uncorrelated as the spatial dynamics between kleptoparasites and foragers
dominate over any interactionbetween cell quality andnumber of individuals. (E)Kleptoparasites
evolve the same preferences under local dispersal as under global dispersal, but foragers have
amuch stronger preference for prey-items, caused by the abundance of deserted, fully-stocked
parts of the landscape.
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InterludeC
DetailsMatterWhenModelling theEffectsofAnimalPersonalityon the

SpatialDistributionofForagers

Christoph F.G. Netz1, Aparajitha Ramesh1, Jakob Gismann1, Pratik R. Gupte,

and Franz J. Weissing1

Δ This text is adapted fromNetz et al. (2022b), now published in Proceedings of

the Royal Society B: Biological Sciences as “Details Matter When Modelling the

Effects of Animal Personality on the Spatial Distribution of Foragers.”

By means of a simulation study, DiNuzzo and Griffen1 investigate whether

individual variation in a personality trait can explain “undermatching”, an often-

observed deviation from the ideal free distribution (IFD). Here we raise five points

of concern about this study, regarding (i) the interpretation of the results in terms

of personality variation; (ii) deficiencies in the technical implementation of the

model, leading to wrong conclusions; (iii) the effects of population size on devi-

ations from the IFD; (iv) the measure used for quantifying deviations from the

IFD; and (v) the analysis of the mud crab data. Finally, we give an outlook over

the evolutionary ramifications of the relation between animal personality and

the IFD.

Personality Variation and the IFD

The individuals in DiNuzzo and Griffen’s model tend to maximize their intake

rate. At each point in time, they are perfectly informed about the distribution

of resources (which remains constant) and the distribution of foragers (which

can change due to movement). Individuals differ in “activity”, that is the rate

at which they recognize that their current intake rate is suboptimal; once they

observe a discrepancy, theymove instantaneously to the habitat patch yielding

amaximal intake rate. In this model, each individual has to move at most once:

if all individuals have moved (or stayed at their initial position, as this already

yielded amaximal intake rate), the IFD is reached. It is therefore obvious that less

active individuals that, by definition, take on average more time steps for making

amovement decision, retard the approach of the population to the IFD. Hence,

1 DiNuzzo, E. R. and Griffen, B. D. (2020), “The Effects of Animal Personality on the Ideal Free
Distribution,” Proceedings of the Royal Society B: Biological Sciences, 287/1934: 20201095.
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it is also obvious that the “time to reach IFD” increases with an increase of the

proportion of inactive individuals. In other words, it is not personality variation

per se that retards the approach to the IFD, but rather the presence of inefficient

movers.

Problemswith the technical implementation of themodel

Above we argued that it is obvious that the “time to reach IFD” increases with

the proportion of inactive individuals. In view of this, it is surprising that DiN-

uzzo and Griffen report a hump-shaped relationship in one of their simulation

scenarios (their Figure 4E) and even amonotonic decline of the time to reach IFD

with the proportion of inactive individuals in case of a type II functional response

(their Supplementary Figure S1, reproduced here in Figure C-1A). We think both

results are artefacts. The pattern in Figure S1 is caused by a comparison between

intake rates calculated with different formulas. As a consequence, individuals

can “believe” that they are already in a habitatmaximizing their intake rate, while

really they are not. In addition, an incorrect formula of a ratio-dependent func-

tional response type 2 is used (following Abrams and Ginzburg 2000)2. A detailed

explanation of thesemistakes can be found in our Supplementary Information. If

these mistakes are corrected, the time to reach IFD shows the expected declining

trend with the proportion of inactive individuals (fig. 1B), rather than the increas-

ing trend reported in Figure S1. Hence, a saturating type II functional response

leads to a similar relationship between the proportion of active consumers and

time-to-IFD as an unlimited linear (type I) functional response. Special explana-

tions for discrepancies between type I and type II models (the “domino effect”

explanation in Supplementary Information 1.4 of DiNuzzo and Griffen 2020) are

not needed and are actually misleading.

We can further show by a simple mathematical argument that the correspon-

dence between the twomodel variants considered by DiNuzzo and Griffen should

be even stronger: the special version of the type II functional response used by

DiNuzzo andGriffen (followingAbrams andGinzburg 2000) should lead to exactly

the same time-to-IFD and the same consumer distribution over patches as their

type I functional response. We were therefore surprised our Figure C-1B does

not exactly match Figure 3 in (DiNuzzo and Griffen 2020): it generally takes 100

time steps longer to reach the IFD. Rerunning the scenario underlying Figure 3 in

(DiNuzzo and Griffen 2020) with DiNuzzo and Griffen’s published NetLogo code,

we obtained an exact replicate of our Figure C-1B. We conclude that DiNuzzo and

Griffenmust have used a different version of their simulation program to produce

their Figure 3.

2 Abrams, P. A. and Ginzburg, L. R. (2000), “The Nature of Predation: Prey Dependent, Ratio
Dependent or Neither?” Trends in Ecology & Evolution, 15/8: 337–41.
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In addition, the simulation program in (DiNuzzo and Griffen 2020) produces a

substantial bias in reported time to reach the IFD. Each simulation run stops once

movement has ceased for 50 time steps, assuming that this is a clear indication

that the IFD has been reached. The problem is that movement can cease for

longer time periods even in situations where the population is still far from an

IFD (Figure C-2A). This easily happens in populations with a large proportion of

highly inactive individuals: the lack of movement of these individuals may just

reflect the reluctance of these individuals to move (rather than having reached a

habitat with maximal intake rate, where movement is no longer necessary).

Figure C-2 shows two replications of Figure 4E in DiNuzzo and Griffen (2020),

one with the published NetLogo code (Fig. 2B) and a second with an improved

version (see Supplementary Information) where DiNuzzo and Griffen’s stopping

criterion is replaced by a check whether the IFD has indeed been reached (Fig.

2C). It is obvious that the stopping criterion has a large effect on the simulation

outcome. Notice that neither outcome shows the puzzling “hump” in Figure 4E in

(DiNuzzo and Griffen 2020). As we produced Figure C-2B with DiNuzzo and Grif-

fen’s published NetLogo code, we have to conclude again that a different version

of their simulation programwas used to derive their Figure 4E. Amore detailed

account of the technical issues reported above (and some additional issues) and

corrected versions of the NetLogo program can be found in the Supplementary

Information.

Figure C-1:Replication of DiNuzzo and Griffen’s Figure S1 (A) using their original NetLogo code
and (B) using a corrected version of their code. Both panels show the time to reach the Ideal
Free Distribution (IFD) for various proportions of “active” (80% activity) and “inactive” (20%
activity) consumers with a type 2 functional response in 1,000 replicate simulations. According
to DiNuzzo and Griffen’sNetLogo code, the time- to-IFD increases with the proportion of active
consumers. A corrected version of the code yields the expected pattern of decreasing waiting
times with increasing proportions of active consumers.
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Figure C-2: Systematic bias in outcomes due to premature termination of simulations. The
NetLogo code underlying the simulations in DiNuzzo and Griffen’s work assumes that the IFD is
reached after 50 time steps of inactivity. (A) Proportion of simulations that have actually reached
the IFD after 50 time steps in inactivity in the scenario underlying Figure 4E in DiNuzzo and
Griffen (2020). (B) Replication of Figure 4E, using DiNuzzo and Griffen’sNetLogo code. (C) The
same set of simulations for an improved version of the NetLogo code, where a simulation now
stops when the IFD is actually reached. In all simulations, “active” consumers have an activity
level of 90%while “inactive” consumers have an activity level of 10%.

Figure C-3: Probability distributions of the time until the ideal free distribution is reached, based
on 1,000 replicate simulations per setting. In a systemwith 49 habitat patches, the panels show
for four population sizes N how the time to reach IFD depends on the proportion of “active”
(movement rate 0.8) and “inactive” (movement rate 0.2) individuals.

Effects of population size

DiNuzzo and Griffen investigated the effect of population size on the time to

reach the IFD. However, the time scale of their model implementation is quite

different from a ‘natural’ time scale. In their simulation program, individuals

142



make decisions sequentially, and only one individual canmake a decision in each

time step. As in a larger population more individuals have to take decisions, this

automatically increases the time to reach a certain target. Moreover, the time to

reach the IFD is inflated by the fact that active individuals are restricted in their

movement because they have to “wait” for the inactive individuals. For these

reasons, it is more natural to use a continuous time scale, where individuals take

movement decisions independently of each other, at a rate that is proportional to

their activity level. This can be done in a straightforwardmanner, by translating

the discrete-time model of DiNuzzo and Griffen into an otherwise equivalent

event-basedmodel (making use of the Gillespie algorithm3 —a description and

implementation of such a model can be found in Netz et al. (2021a)4). Figure C-3

shows how in the event-based version of the model the time to reach the IFD

depends on the population size N and the proportion of active individuals. For

each population size, the time to reach the IFD is, as expected, positively related

to the proportion of inactive individuals. However, the event-based version of the

model does not support DiNuzzo and Griffen’s conclusion that the time to reach

the IFD increases with population size. This only occurs for very low population

densities (N = 8 and N = 40 in Figure C-3), and even in these cases the effect is

small.

At higher population sizes, the time to reach the IFD decreases with population

size: as shown in Figure C-3, the IFD is reachedmuch faster in a populationwithN

=1000 individuals than inanyof the smaller populations. This canbeexplainedas

follows. In case of the lowpopulation sizes consideredbyDiNuzzo andGriffen, the

initial density of individuals is very low (typically only one individual per patch).

In such a case, an individual can only improve its intake rate bymoving to amore

profitable patch. In case of a large population size (and a higher initial density per

patch), there is an additional option: if an individual on a patch decides to leave in

order to improve its intake rate elsewhere, all remaining individuals on that patch

profit as their intake rate increases due to alleviated within-patch competition5.

This effect is not addressed by the study of DiNuzzo and Griffen, although the

authors state: “in most natural systems, there are manymore consumers than

patches.”

3 Gillespie, D. T. (1976), “A General Method for Numerically Simulating the Stochastic Time Evolu-
tion of Coupled Chemical Reactions,” Journal of Computational Physics, 22/4: 403–34.

4 Netz, C. F. G. et al. (2021a), Christophnetz/Time-to-IFD_simulator: Comment to DiNuzzo and
Griffen 2020 - SupplementaryMaterial (version v1.0.0) (Zenodo).

5 Wolf, M. et al. (2008), “Evolutionary Emergence of Responsive and Unresponsive Personalities,”
Proceedings of the National Academy of Sciences.
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Quantifying the approach to the IFD

DiNuzzo and Griffen conducted their study in order to investigate whether

personality differences can explain “undermatching”, the commonly observed

phenomenon that high-resource patches tend to be underexploited while low-

resource patches are overexploited. Yet, they devote only one figure (their Fig-

ure C-2) to this phenomenon. In general, they quantify deviations from the IFD

by measuring the time to reach the IFD. This measure has at least three disad-

vantages. First, “time-to-IFD” is determined by the last individual that moves

to a patch with an optimal intake rate. In other words, a single individual with

very low activity can have a very large effect on time-to-IFD. Second, “time-to-

IFD” depends on the initial conditions; it takes longer to reach the IFD if the

initial distribution of individuals over patches differs a lot from the IFD. Third,

“time-to-IFD” is only a sensible measure when the IFD is actually reached. This,

however, will only be the case in highly standardized simulationmodels with a

fixed resource distribution. As stated by DiNuzzo and Griffen: “In most systems,

the IFD is a moving target owing to temporal environmental variation and direc-

tional change (i.e. habitat degradation).” In Section 1.5 of their Supplementary

Information, DiNuzzo and Griffen show some simulation results for a scenario

with temporally varying patch quality. Surprisingly, “time-to-IFD” is also used

for this scenario (their Supplementary Figure S2), where it is difficult for us to

understand how the IFD can ever be reached in case of rapid environmental

change. How canmovement cease for 50 time steps (the criterion for reaching the

IFD) if the distribution of patch qualities changes completely every 10 or 20 time

steps? Under such changing conditions, we would advocate using a more robust,

population-level measure for deviations from the IFD, such as the variance in

intake rates across patches.

Analysis of themud crab system

We are puzzled by the fact that DiNuzzo and Griffen revert to a simple calcula-

tion of ratios in their analysis of the refuge use data on themud crab Panopeus

herbstii6 instead of taking advantage of their individual-based model. The model

becomes necessary because such a simple calculation does not suffice, as it ig-

nores the distribution of personality in the population. Hence, Figure 5 illustrates

the influence of personality on the IFD only in the sense that no single crab is

“ideal” in immediately leaving its refuge andmoving to the patch with highest

profitability, but not the implications of the distribution of activity levels in the

population. Additionally, the data comes from a special (predation cue) treat-

ment, not from standard conditions; and the crabs differ substantially in size

6 Toscano, B. J. et al. (2014), “Effect of PredationThreat onRepeatability of Individual CrabBehavior
Revealed byMark-Recapture,” Behavioral Ecology and Sociobiology, 68/3: 519–27.
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(actually body size is used as a proxy for activity level) and accordingly also in

their resource needs and competitive abilities.

Outlook

We have the impression that DiNuzzo and Griffen view “personalities” mainly

as (maladaptive) deviations from optimal or efficient behaviour. In contrast,

many studies show that personality variation is often shaped by adaptive evo-

lution7. For example, Wolf and colleagues demonstrate that “inactivity” (called

“unresponsiveness”) may be viewed as an efficient strategy in achieving a high

foraging success and approaching an ideal free distribution. An adaptive perspec-

tive on personality variation leads to novel eco-evolutionary questions regarding

the interplay of individual behavioural variation and the spatial distribution of

foragers.

Future research is needed to reconcile the IFDwith the eco-evolutionary causes

and consequences of personality for at least two reasons: First, the IFDmodel pre-

supposes that the resource intake rate is a proxy for fitness8. But how, then, can

different personality types persist at stable proportions, when inactive individu-

als consistently achieve a lower intake rate than their more active conspecifics?

Second, a personality perspective may change what spatial distribution is op-

timal. In animals, differences in activity are usually associated with (adaptive)

differences in energy metabolism9. When foraging individuals differ in energetic

expenditure, they should not only take maximizing the intake rate as their sole

guiding principle10. In other words, individuals differing in activity should use

different decision rules, and the optimal behaviour of a polymorphic population

may, even at equilibrium, deviate considerably from the IFD of a monomorphic

population.

-.-

7 Wolf, M. andWeissing, F. J. (2012), “Animal Personalities: Consequences for Ecology and Evolu-
tion,” Trends in Ecology & Evolution, 27/8: 452–61.

8 Tregenza, T. (1995), “Building on the Ideal Free Distribution,” in Advances in Ecological Research,
xxvi (Elsevier), 253–307.

9 Careau, V. et al. (2008), “Energy Metabolism and Animal Personality,” Oikos, 117/5: 641–53.
10 Campos-Candela, A. et al. (2019), “AMechanistic Theory of Personality-Dependent Movement

Behaviour Based on Dynamic Energy Budgets,” Ecology Letters, 22/2: 213–32.
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Supplementary Information for Interlude C

The supplementary material for this interlude may be found online as Sup-

porting Information published along with the manuscript, Netz et al. (2022b),

“Details Matter WhenModelling the Effects of Animal Personality on the Spatial

Distribution of Foragers,” at: https://royalsocietypublishing.org/doi/10.1098/r-

spb.2021.0903.
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148 CHAPTER 5

…[E]volution codifies happenstance into strategy.

– from Spillover, by David Quammen.

Abstract

Animal social interactions are the outcomes of evolved strategies that inte-

grate the costs and benefits of being sociable. We study a scenario in which a

fitness-reducing infectious pathogen is introduced into a population which has

initially evolvedmovement strategies in its absence. Within only a few genera-

tions, pathogen introductionprovokes a rapid evolutionary shift in animals’ social

movement strategies, and the importance of social cues in movement decisions

increases. Individuals undertake a dynamic social distancing approach, trading

moremovement (and less intake) for lower infection risk. Pathogen-adapted pop-

ulations disperse more widely over the landscape, and thus have less clustered

social networks than their pre-introduction, pathogen-naive ancestors. Running

epidemiological simulations on these emergent social networks, we show that

diseases do indeed spreadmore slowly through pathogen-adapted animal soci-

eties. Finally, the mix of post-introduction strategies is strongly influenced by a

combination of landscape productivity, the usefulness of social information, and

disease cost. Our model suggests that the introduction of an infectious pathogen

into a population can trigger a rapid eco-evolutionary cascade, rapidly changing

animals’ social movement strategies, which alters movement decisions and en-

counters between individuals. In turn, this changes emergent social structures,

and our model informs how such change canmake populations more resilient

to future disease outbreaks. Overall, we offer both a modelling framework and

initial predictions for the evolutionary and ecological consequences of wildlife

pathogen spillover scenarios.
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Introduction

A
NIMAL sociality emerges from individual decisions that balance the benefits

of associations against the costs of proximityor interactionswithneighbours

(Tanner and Jackson 2012; Gil et al. 2018; Webber and Vander Wal 2018; Webber

et al. 2022). While such associations can inadvertently or deliberately yield useful

social information about resource availability (Danchin et al. 2004; Dall et al.

2005; Gil et al. 2018), they also provide opportunities for the transmission of

parasites and infectious pathogens among associating individuals (Weinstein et

al. 2018; Romano et al. 2020; Albery et al. 2021; Cantor et al. 2021; Romano et al.

2021). Wildlife pathogen outbreaks affect most animal taxa, including mammals

(Blehert et al. 2009; Fereidouni et al. 2019; Chandler et al. 2021; Kuchipudi et

al. 2022), birds (Wille and Barr 2022), amphibians (Scheele et al. 2019), and

social insects (Goulson et al. 2015). Weighing the potential risk of infection

from social interactions against the benefits of social movements — where to

move in relation to other individuals’ positions — is thus a common behavioural

context sharedbymanyanimal species. Movement strategies incorporating social

information— the presence and status of neighbours — can facilitate or reduce

spatial associations, and help animals balance the costs and benefits of sociality

(Gil et al. 2018; Webber and Vander Wal 2018; Albery et al. 2021; Webber et al.

2022). Animals’ social movements link landscape spatial structure, individual

distributions, and the emergent structure of animal societies (Kurvers et al. 2014;

Gil et al. 2018; Webber et al. 2022). Together, they influence the dynamics of

disease outbreaks in animal populations (Keeling et al. 2001; White et al. 2018a;

Romano et al. 2020; 2021), and such outbreaksmay in turn have cascading effects

on landscape structure and community ecology (Monk et al. 2022).

On ecological timescales, pathogen outbreaks often reduce social interactions

among individuals. This is due to a combination of mortality-induced decreases

in population density (e.g. Fereidouni et al. 2019; Monk et al. 2022), and adaptive

behavioural responses by which animals reduce encounters between infected

and healthy individuals (Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu

et al. 2021; Stockmaier et al. 2021). The latter case includes self-isolating when

infected, or avoiding potentially infectious individuals (Stroeymeyt et al. 2018;

Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021). However,

when pathogens are first introduced into a population, such as during novel

cross-species spillover (Chandler et al. 2021; Kuchipudi et al. 2022), fine-tuned

avoidance responses are less likely, as individuals may have no prior experience

of cues that indicate infection (Weinstein et al. 2018; Stockmaier et al. 2021).

Spreading through host-host contacts, pathogens causing chronic infections

(Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021) may instead impose
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fitness costs, thus selecting against host social behaviour, and hence against

social connectivity itself (Altizer et al. 2003; Cantor et al. 2021; Poulin and Filion

2021; Romano et al. 2021; Ashby and Farine 2022).

Yet novel pathogen introductions are primarily studied for their immediate de-

mographic (Fey et al. 2015), and potentialmedical (Levi et al. 2012; Chandler et al.

2021; Kuchipudi et al. 2022; Wille and Barr 2022) and economic implications

(Keeling et al. 2001; Goulson et al. 2015; Jolles et al. 2021), with host evolu-

tionary dynamics (and especially changes in sociality) mostly ignored. This is

presumably because the evolution of pathogen host traits, andmoreover complex

behavioural traits such as sociality, is expected to be slow and not immediately

relevant. Since important aspects of animal ecology, including the transmission

of foraging tactics (Klump et al. 2021) andmigration routes (Guttal and Couzin

2010; Jesmer et al. 2018), depend on social interactions, it is necessary to under-

stand the long-term consequences of pathogen introductions for animal societies.

Climate change is only expected to make novel pathogen introductions more

common (Sanderson and Alexander 2020; Carlson et al. 2022a), making such

studies more urgent.

Theory suggests that animal sociality evolves to balance the value of social asso-

ciations against the risk of pathogen transmission (Bonds et al. 2005; Prado et al.

2009; Ashby and Farine 2022). However, analytical models often reduce animal

sociality to single parameters, while it actually emerges from individual decisions

conditioned onmultiple internal and external cues. Social decision-making and

movement often also vary among individuals (Tanner and Jackson 2012; Wolf

andWeissing 2012; Spiegel et al. 2017; Gartland et al. 2021), but analytical mod-

els are unable to include individual differences in sociability. Epidemiological

models based on contact networks can incorporate individual variation in social

behaviour by linking these differences to positions in a social network (White

et al. 2017; Albery et al. 2020; 2021). Yet networkmodels often cannot capture

fine-scale feedbacks between individuals’ social and spatial positions (Albery et al.

2020; 2021), nor spatial variation in infection risk (Albery et al. 2022), making

suchmodels sensitive to both the network formation process, and to sampling

biases in empirical data collection (White et al. 2017).

Mechanistic, individual-based simulationmodels (IBMs) suggest themselves

as a natural solution; they can incorporate substantial ecological detail, including

explicit spatial settings (DeAngelis and Diaz 2019), and detailed disease transmis-

sion (White et al. 2018a,b; Scherer et al. 2020; Lunn et al. 2021). Individual-based

models hitherto haved focused on immediate epidemiological outcomes, such

as infection persistence, and do not have an evolutionary component (White

et al. 2018b; Scherer et al. 2020; Lunn et al. 2021). Incorporating an evolutionary

component to movement-disease IBMs could allow predictions on important
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feedbacks between the ecological outcomes of infectious disease and the con-

sequences for the evolution of host behaviour (Cantor et al. 2021). This could

include the emergence of tradeoffs in the costs and benefits of sociability (Gart-

land et al. 2021), with cascading ecological and social effects (Tanner and Jackson

2012; Spiegel et al. 2017; Monk et al. 2022; Webber et al. 2022). The range of

animal taxa at risk from a wide array of pathogens and parasites (Sanderson and

Alexander 2020; Carlson et al. 2022a) makes it important to conceive of models

that can capture the key features of diverse host-pathogen dynamics and offer

broad conceptual insights (White et al. 2018a,b).

We built a model that seeks to capture the essential elements of pathogen

(or parasite) transmission among animals foraging on patchily distributed re-

sources — this is a common behavioural context shared bymany potential host

species (White et al. 2018a,b). We examined the eco-evolutionary consequences

of the introduction of a pathogen into a novel host population (such as during

cross-species spillover: Bastos et al. 2000; Blehert et al. 2009; Fereidouni et al.

2019; Scheele et al. 2019; Sanderson and Alexander 2020; Carlson et al. 2022a;

Kuchipudi et al. 2022;Monk et al. 2022;Wille and Barr 2022). In our evolutionary,

spatial, individual-based simulation, wemodelled the repeated introduction of an

infectious pathogen to populations that had already evolved foraging movement

strategies in its absence. Our model could be conceived as an abstract representa-

tion of, among others, spillovers of foot-and-mouth disease frombuffalo to impala

(Bastos et al. 2000; Vosloo et al. 2009), or sarcoptic mange from llamas to vicuñas

(Monk et al. 2022), current and historic spread of avian influenza among sea- and

wading bird species (Global Consortium for H5N8 and Related Influenza Viruses

2016; Wille and Barr 2022), or SARS-CoV-2 from humans to deer (Chandler et al.

2021; Kuchipudi et al. 2022).

We compared how social informationwas used inmovement strategies evolved

before and after pathogen introduction, and the ecological outcomes for individ-

ual intake, movement, and associations with other foragers. Using both IBMs

and network epidemiological models (Bailey 1975; White et al. 2017; Stroeymeyt

et al. 2018; Wilber et al. 2022), we examined whether pathogen-risk adapted

populations were more resilient to the spread of infectious disease than their

pathogen-risk naive ancestors. We also investigated the effect of landscape pro-

ductivity and the cost of infection, which are both expected to influence the

selection imposed by pathogen transmission (Hutchings et al. 2000; Almberg et

al. 2015; Ezenwa et al. 2016). Overall, we provide a theoretical framework broadly

applicable to novel host-pathogen introduction scenarios, and demonstrate the

importance of including evolutionary dynamics in movement-disease models.
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The PathomoveModel of Novel Pathogen Introduction

We implemented an individual-based simulationmodel to represent foraging

animals (‘foragers’) seeking discrete, immobile, depleteable food items (see SI

Appendix Fig. S1 – S2) (Spiegel et al. 2017; Gupte et al. 2021). Food items are

distributed over a two-dimensional, continuous-space resource landscape with

wrapped boundaries (a torus). Our model, similar to previous eco-evolutionary

individual basedmodels (Getz et al. 2015; Gupte et al. 2021; Netz et al. 2021b), has

twodistinct timescales: (1) an ecological timescale comprising ofT timesteps that

make up one generation (𝑇 = 100 by default), and (2) an evolutionary timescale

consisting of 5,000 generations (G). At the ecological timescale, individuals sense

local counts of food items and competitors, move according to inherited move-

ment strategies, and forage for food. At the same timescale, individuals that

carry an infectious, fitness-reducing pathogen, may, when in close proximity

with uninfected individuals, pass on the pathogen with a small probability (see

Pathogen Transmission andDisease Cost). At the evolutionary timescale, individ-

uals reproduce and transmit their movement strategies (see Starting Location

and Inheritance of Movement Rules) to the their offspring. The number of off-

spring is linked both to individuals’ success in finding and consuming food items,

and to the duration that they were infected by the pathogen at the ecological

timescale. Themodel was implemented in R and C++ using Rcpp (Eddelbuettel

2013; R Core Team2020) and theBoost.Geometry library for spatial computations

(www.boost.org); model code is at github.com/pratikunterwegs/pathomove.

Distribution of Food Items

Our landscape of 60 × 60 units contains 1,800 discrete food items, which are

clustered around 60 resource ‘kernels’, for a resource density of 0.5 items per

unit2 (see SIAppendixFig. S1–S2). This prevents synchronicity in the availability

and regeneration of food items. Each available food item can be sensed and

harvested by foraging individuals (see below). Once harvested, another food item

is regenerated at the same location after a fixed regeneration timeR,which is set at

50 timesteps by default; alternative values of 20 and 100 timesteps represent high

and low productivity landscapes respectively. Food item regeneration is delinked

from population generations. Thus the actual number of available food items is

almost always in flux. In our figures and hereafter, we chose to represent R as the

number of times a food itemwould regenerate within the timesteps in a single

generation 𝑇 (default = 100), resulting in R values of 1, 2, and 5 for regeneration

times of 100, 50 (the default), and 20 timesteps. Items that are not harvested

remain on the landscape until they are picked up by a forager. Each food item

must be processed, or ‘handled’, by a forager for 𝑇𝐻 timesteps (the handling time,
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default = 5 timesteps) before it can be consumed (Ruxton et al. 1992; Gupte et al.

2021). The handling time dynamic is well known from natural systems in which

there is a lag between finding and consuming a food item (Ruxton et al. 1992),

andmay be caused by the need to extract edible portions from inedible structures,

such as mussels from their shells, or seeds from their casings.

Individual Foraging andMovement

Individuals forage in a randomised order, harvesting the first available food

item within their movement and sensory range (𝑑𝑆 = 𝑑𝑀, a circle with a radius

of 1 unit (see SI Appendix Fig. S1 – S2). Once harvested, the item is no longer

available to other individuals, leading to exploitation competition among nearby

foragers. Furthermore, the location of the item also yields nomore cues to other

foragers that an item will reappear there, reducing direct cues by which foragers

can navigate to profitable clusters of food items. Individuals that harvest a food

itemmust handle it for 𝑇𝐻 timesteps (default = 5 timesteps), while all individuals

not handling a food item are considered idle (Ruxton et al. 1992; Gupte et al.

2021). As handlers are immobilised at the location where they encountered

food, they may be good indirect indicators of the location of a resource cluster

(‘social information’) (Danchin et al. 2004; Romano et al. 2020; Gupte et al. 2021).

Once individuals finish handling a food item, they return to the non-handling,

searching state.

Our model individuals move in small, discrete steps of fixed size (𝑑𝑀 = 1 unit).

Each step is chosen based on the individuals’ assessment of local environmental

cues, and this assessment ismade using evolvedmovement strategies (as inGupte

et al. 2021; Netz et al. 2021b). First, individuals scan their current location, and

five equally spaced points around their position, at a distance of 1 unit for three

cues (𝑑𝑆, see SI Appendix Fig. S1 – S2): the number of food items (𝐹), the number

of foragers handling a food item (‘handlers’: 𝐻) and the number of idle foragers

not handling a food item (‘non-handlers’: 𝑁). Individuals assign a suitability

(see Gupte et al. 2021; Netz et al. 2021b) to their current position and each of

the five locations, using their inherited preferences for each of the cues: 𝑆 =
𝑠𝐹𝐹 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁 + 𝜖. The preferences 𝑠𝐹, 𝑠𝐹, and 𝑠𝑁 for each of the three cues

are heritable from parents to offspring, while 𝜖 is a very small error term drawn

for each location, to break ties among locations. The values of each of the cue

preferences relative to each other determine individuals’ movement strategies

(Gupte et al. 2021). All individuals move simultaneously to the location to which

they have assigned the highest suitability (‘step selection’) (akin to step-selection;

Fortin et al. 2005); this may be their current location, in which case individuals

are stationary for that timestep. Since individuals may differ in their inherited

preferences for each of the three cues, two individuals at the same locationmay
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make quite differentmovement decisions based on the same local cues. Handlers,

however, are considered immobile and do not make anymovement decisions.

Pathogen Transmission andDisease Cost

Wemodelled circumstances that are expected to become increasingly common

due to rapid global changes; the population evolves for 3/5th of the simulation

(until G = 3,000; of 5,000) in the absence of a pathogen, after which a pathogen is

introduced in each generation until the end of the simulation (G = 5,000). Our

model captures some essential features of pathogen or parasite transmission

among animals (White et al. 2017): the pathogen may transmit from infected

host individuals to their susceptible neighbours with a per-timestep probability 𝑝
of 0.05. This transmission is only possible when the two individuals are within a

the transmission distance, 𝑑𝛽. For simplicity, we set 𝑑𝛽 to be the movement range

(1 unit). Once transmitted, the pathogen is assumed to cause a chronic disease

which reduces host energy stores by a fixed amount called 𝛿𝐸 in every following

timestep; 𝛿𝐸 is set to 0.25 by default (alternative values: 0.1, 0.5). Since novel

pathogen introductions can periodically re-occur in natural environments (Bas-

tos et al. 2000; Vosloo et al. 2009; Almberg et al. 2015; Goulson et al. 2015; Jolles

et al. 2021; Carlson et al. 2022a; Wille and Barr 2022), we set up our model such

that the pathogen was introduced to 4% of individuals in each generation (N =

20; ‘primary infections’). This is necessary to kick-start the pathogen-movement

eco-evolutionary feedback dynamics, and populations may indeed repeatedly

acquire novel pathogens (or strains) through external sources, such as infected

individuals of other spatially overlapping species (e.g. Bastos et al. 2000; Keel-

ing et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Carlson et al. 2022a;

Kuchipudi et al. 2022; Monk et al. 2022; Wille and Barr 2022). For complete-

ness, we also considered scenarios in which novel pathogen introductions only

occur sporadically in the generations after the initial event, rather than in every

generation (see SI Appendix).

Starting Location and Inheritance ofMovement Rules

For simplicity, we considered a population of haploid individuals with discrete,

non-overlapping generations, and asexual inheritance. At the end of the parental

generation, the net lifetime energy of each individual was determined as the

difference of the total energy gained through food intake and the energy lost

through infection. In the SI Appendix, we also consider an alternative imple-

mentation in which potential immune resistance against the pathogen requires

a certain percentage of individual intake, reducing the value of each food item.

The parental population produces an offspring population (of the same size) as
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follows: to each offspring, a parent is assigned at random by a weighted lottery,

with weights proportional to lifetime net energy (an algorithm following the repli-

cator equation) (Hofbauer and Sigmund 1988; Hamblin 2013). This way, the

expected number of offspring produced by a parent is proportional to the parent’s

lifetime success (Hofbauer and Sigmund 1988). The movement decision-making

cue preferences 𝑠𝐹, 𝑠𝐻, and 𝑠𝑁 are subject to independent randommutations with

a probability of 0.01. The mutational step size (either positive or negative) is

drawn from a Cauchy distribution with a scale of 0.01 centred on zero. Thus,

while the majority of mutations are small, there can be a small number of very

large mutations. As in real ecological systems, individuals in the new generation

are intialised around the location of their parent (within a standard deviation of

2.0), and thus successful parents give rise to local clusters of offspring (see an

alternative implementation in SI Appendix).

Model Output

To understand the evolution of movement strategies, and especially how in-

dividuals weighed social information, we recorded the population’s evolved cue

preferences in every second generation, and interpreted them using the ‘be-

havioural hypervolume’ approach (Bastille-Rousseau andWittemyer 2019). We

classified individuals based on how they used social information— the presence

and status of competing foragers — into four social movement classes: (1) agent

avoiding, if 𝑠𝐻, 𝑠𝑁 < 0, (2) agent tracking, if both 𝑠𝐻, 𝑠𝑁 > 0, (3) handler tracking,
if 𝑠𝐻 > 0, 𝑠𝑁 < 0, and (4) non-handler tracking, if 𝑠𝐻 < 0, 𝑠𝑁 > 0. We calculated

the relative importance of social cues—𝐻,𝑁— to each individual’s movement

strategy as 𝑆𝐼𝑖𝑚𝑝 = (|𝑠𝐻| + |𝑠𝑁|)/(|𝑠𝐻| + |𝑠𝑁| + |𝑠𝐹|), with higher values indicating a
greater importance of social cues.

Animalmovements and foragingdistributionsprovideopportunities forbetween-

individual associations, which usually have a spatial context. Associations which

depend on spatial proximity can be captured at the individual- and population-

level by proximity-based animal social networks (Whitehead 2008; Farine and

Whitehead 2015). Social networks measured from empirical studies have been

broadly informative about the structure of animal societies, and the consequences

of this structure for animal culture, such as the learning of migration routes or

foraging skills (Aplin et al. 2012; 2013; Cantor et al. 2021), and for disease trans-

mission (Stroeymeyt et al. 2018; Albery et al. 2021; Cantor et al. 2021). We created

a proximity-based adjacency matrix by counting the number of times each indi-

vidual was within the sensory and pathogen transmission distance 𝑑𝛽 (= 𝑑𝑆, 𝑑𝑀 = 1

unit) of another individual (Whitehead 2008; Wilber et al. 2022). We transformed

thismatrix into an undirected social network weighted by the number of pairwise

encounters: in a pairwise encounter, both individuals were considered to have
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associated with each other (White et al. 2017). The strength of the connection

between any pair was the number of times the pair were within 𝑑𝛽 of each other
over their lifetime. We logged encounters and constructed social networks after

every 10% of the total generations (i.e., every 500th generation), and at the end

of the simulation. We constructed adjacencymatrices using Rcpp (Eddelbuettel

2013), and converted them tonetworks using the igraph (Csardi andNepusz 2006)

and tidygraph (Pedersen 2020) libraries for R. We omitted ephemeral pairwise

associations with a weight < 5.

We plotted the mix of social information-basedmovement strategies evolved

across generations in each parameter combination. Focusing on our default

scenario (𝛿𝐸 = 0.25, R = 2), we visualised the mean per-capita distance moved,

mean per-capita intake, andmean per-capita encounters with other foragers. We

examined how the three main social movement strategies — agent avoidance,

agent tracking, and handler tracking— changed in frequency over generations.

We also examined differences among strategies in the movement distance, asso-

ciations with other agents, and frequency of infection, after they had reached

an eco-evolutionary equilibrium following pathogen introduction (G > 3,500).

We visualised the proximity based social networks of populations in a represen-

tative scenario (𝛿𝐸 = 0.25, R = 2), focusing on the generations just before and

after the pathogen introduction events begin (pre-introduction: G = 3,000; post-

introduction: G = 3,500). We plotted the numbers of individuals infected in

each generation after pathogen introduction to examine whether evolutionary

changes in movement strategies actually reduced infection spread. We also ran

simple network epidemiological models on the emergent individual networks in

generations 3,000 and 3,500 (Bailey 1975; White et al. 2017; Stroeymeyt et al.

2018; Wilber et al. 2022), for robust comparisons of potential pathogen spread in

pathogen-naive and pathogen-adapted populations, respectively.

Outcomes from the PathomoveModel

In our model, individuals move and forage on a landscape with patchily dis-

tributed food items, and select where next to move in their vicinity, based on

inherited preferences for environmental cues— food items, and other individuals

(see SI Appendix Fig. S1). Food items, once consumed, regenerate at a rate R, and

pathogen infection imposes a per-timestep cost 𝛿𝐸. We classified individuals’

socialmovement strategies in ourmodel using a simplified ‘behavioural hypervol-

ume’ approach (Bastille-Rousseau andWittemyer 2019), based on the sign of their

preferences for successful foragers handling a food item (‘handlers’, preference

𝑠𝐻), and for unsuccessful foragers still searching for food (‘non-handlers’, prefer-
ence 𝑠𝑁). In our default scenario, R = 2, food regenerates twice per generation, and
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𝛿𝐸 = 0.25, i.e., consuming 1 food item offsets 4 timesteps of infection. Over the

3,000 generations before the introduction of the pathogen, populations reached

an eco-evolutionary equilibriumwhere the commonest socialmovement strategy

was to prefer moving towards both handlers and non-handlers (‘agent tracking’;

𝑠𝐻, 𝑠𝑁 > 0; but see below) (Fig. 5.1A).

Rapid Evolutionary Shift in SocialMovement Strategies Following Pathogen

Introduction

Introducing an infectious pathogen to 4% (n = 20) of individuals in each genera-

tion (after G = 3,000), leads to a remarkably rapid evolutionary shift—within only

25 generations of pathogen introduction— in how social information is incorpo-

rated into individuals’ movement strategies. There is a marked increase in the

frequency of individuals that track successful foragers, but avoid non-handlers

(‘handler tracking’; 𝑠𝐻 > 0, but 𝑠𝑁 < 0) (Fig. 5.1A; 3,000< 𝐺 < 3,025). Surprisingly,

after a brief period (in evolutionary terms) of handler tracking being the most

common strategy, a third strategy also becomes more common: avoiding both

handlers and non-handlers (‘agent avoiding’; 𝑠𝐻, 𝑠𝑁 < 0). Within 250 generations

after pathogen introduction, agent avoiding becomes as common as the handler

tracking strategy, and this appears to be a stable equilibrium that is maintained

until the end of the simulation (2,000 generations after pathogen introduction;

Fig. 5.1A). The SI Appendix shows how the occurrence of rapid evolutionary

shifts is broadly robust to modelling assumptions; in brief, such shifts occur even

when individuals cannot benefit from evolved adaptation to local conditions

(Badyaev and Uller 2009), and when the pathogen saps a percentage, rather than

an absolute value, from daily intake.

In addition to qualitative changes in social movement strategies, pathogen

introduction also leads to social information becoming more important to move-

ment decisions. Prior to pathogen introduction (𝐺 < 3,000), individuals’ handler-

andnon-handler preferences (|𝑠𝐻|+|𝑠𝑁|; taken together, social information) barely

influence their movement strategies (Fig. 5.1B). These are instead guided pri-

marily by the preference for food items (𝑠𝐹; see Model and Analysis; see also

Supplementary Information). Social movement decisions are joint outcomes of

individual preferences for social cues and the cue value: consequently, in clus-

tered populations (see below), even small positive values of 𝑠𝐻 and 𝑠𝑁 lead to

strong emergent sociality. After pathogen introduction, there is a substantial

increase in the average importance of individuals’ preferences (or aversions) for

the presence of other foragers (Fig. 5.1B). However, there is significant variation

among individuals in the importance of social information to their movement

strategies, with distinct evolved polymorphisms that vary substantially between

simulation replicates (Fig. 5.1B).
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Figure 5.1: Pathogen introduction leads to rapid evolutionary changes in social informa-
tionuse,with cascading effects onpopulation ecological outcomes. (A) Before pathogen
introduction in the default scenario (R = 2, 𝛿𝐸 = 0.25), populations rapidly evolve a social move-
ment strategy that tracks all other individuals (‘agent tracking’; 𝐺 ≤ 3,000) — however, their
overall movement strategy is primarily guided by the presence of food items (B). Pathogen intro-
duction leads to the rapid replacement, within 25 generations, of agent tracking with ‘handler
tracking’ (preference for successful foragers; 3,000 < 𝐺 < 3,025). Within 250 generations, ‘agent
avoidance’ (avoidance of both successful and unsuccessful foragers; 𝐺 > 3,250) also becomes
common, stably co-existingwith the handler tracking strategy in an eco-evolutionary equilibrium.
(B) After pathogen introduction (𝐺 > 3,000), the importance of social cues (the presence of other
individuals; the sum of the absolute, normalised preferences 𝑠𝐻, 𝑠𝑁) increases substantially on
average (grey points). Additionally, there is significant variation in the importance of social cues
to individuals (shaded regions), which is not captured by themean or standard error. At G = 4,500,
for example, social information comprises ≈ 10% of some individuals’ movement strategies, but
some individuals have evolved a stronger weight for social cues (> 20%). The rapid change in
social movement strategies following pathogen introduction has cascading effects on ecological
outcomes. Individuals, which have evolved strong aversions to at least some kinds of foragers
(depending on their strategy), (C)movemore on average, (D) have only 25% of the pre-pathogen
average intake, and (E) have 100-fold fewer associations with other individuals. All panels show
data averaged over 10 replicates, but shaded region in panel B shows only a single replicate for
clarity.

Disease-dominated Ecological Cascade Due to Evolutionary Shift inMovement

Strategies

The evolutionary shift in social movement strategies causes a drastic change

in ecological outcomes (Fig. 5.1C – E; see SI Appendix Fig. S3 for other scenar-
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ios). There is a sharp increase in mean distance moved by individuals; while

pre-introduction individuals moved 35% of their lifetimes on average (i.e., 35

timesteps; handling for the remainder), post-introduction, individuals move for

80% of their lifetimes (i.e., 80 timesteps; Fig. 5.1C). The handler tracking and

agent avoiding strategies lead individuals to move away from groups of individu-

als (‘dynamic social distancing’; Pusceddu et al. 2021). Individuals beingmost

likely to be found near resource clusters, this leads to movement away from pro-

ductive areas of the landscape. Consequently, there is a rapid, four-fold drop in

mean per-capita intake after pathogen introduction (Fig. 5.1D). The concurrent,

near 100-fold drop in encounters between individuals after pathogen introduc-

tion (Fig. 5.1E) suggests that most encounters were likely taking place on or near

resource clusters. The reductions in intake observed are equivalent to those ex-

pected from halving landscape productivity (SI Appendix Fig. S3). Our model

shows how even a non-fatal pathogen, by influencing the evolution of movement

strategies, can have substantial indirect ecological effects — a disease dominated

ecological cascade (Monk et al. 2022).

Co-existence of SocialMovement Strategies

At eco-evolutionary equilibrium (G > 3,500) the relationship betweenmove-

ment and avoiding associations (and further, infection) is mediated by individual

differences in how exactly social information is incorporated into movement

strategies. Individuals using the agent avoiding strategymovemore than handler

tracking ones (Fig. 5.2A), about 85% of their lifetime (default scenario: R = 2; 𝛿𝐸
= 0.25). At this limit, every step moved allows them to avoid approximately 2

encounters with other individuals. Handler tracking individuals move much less

(∼ 60% – 80%), but are able to avoid approximately 20 encounters with other indi-

viduals with every extra step. These differences may explain why agent avoiding

and handler tracking individuals have similar mean infection rates, at ∼ 25% and

∼ 33% respectively (Fig. 5.2B). All other strategies, especially the agent tracking

strategy common in pre-introduction populations, are barely able to translate

increasedmovement into fewer associations (Fig. 5.2A). These strategies have a

wide range of infection rates (Fig. 5.2B), potentially because they are very rare —

these likely represent mutants that do not give rise to persistent lineages.

Reorganisation of Spatial-social Structure

Following pathogen introduction, the mixture of individual-level movement

strategies elicits a substantial re-organisation of emergent spatial and social struc-

ture at the population level. Pre-introduction populations are strongly clustered

in space (Fig. 5.3A), due to movement strategies that favour following most other
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Figure5.2: Socialmovement strategies trademovement for associations throughdynamic
social distancing, leading to differences in infection rates. In post-introduction populations
at eco-evolutionary equilibrium (G > 3,500), (A) both agent avoiding and handler tracking indi-
viduals can reduce encounters with other individuals by moving to avoid other foragers (dynamic
social distancing). Handler tracking individuals have manymore encounters than agent avoiding
individuals, but surprisingly, are better able to reduce encounters through increased movement.
Individuals using other strategies (mostly agent tracking) have a wider range of movement dis-
tances, but cannot efficiently avoid other foragers bymovingmore. (B)Avoiding all other foragers
leads to marginally lower infection rates than tracking successful foragers (and avoiding unsuc-
cessful ones; handler tracking). Surprisingly, rare pre-introduction strategies such as following
any nearby individuals (agent tracking) may also have low infection rates, potentially due to their
rarity. Panel A shows linear model fits with a log scale Y-axis; panel B shows infection rates; all
data represent generation- and replicate-specific means (G > 3,500; R = 2, 𝛿𝐸 = 0.25).

foragers. This spatial proximity means that most individuals encounter each

other at least once, leading to numerous unique partners (the ‘degree’) for each

forager (Fig. 5.3 inset 1: blue). In contrast, the spread-out networks in pathogen-

risk adapted populations suggest that most foragers move substantially from

their initial locations over their lifetime, associating only ephemerally with for-

agers from all over the landscape (Fig. 5.3B). This reflects movement strategies

which lead to near-perpetual movement to avoid associations; a sort of dynamic

social distancing seen in real animal societies under risk of pathogen spread

(Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier

et al. 2021). This dispersed population structure means that most pathogen-risk

adapted foragers encounter fewer than 10% of the population over their lifetime

(Fig. 5.3 inset 1: red).
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Figure 5.3: Reduced spatial-social clustering and disease transmission in populations
adapted to the presence of an infectious pathogen. pathogen-risk naive populations (A;
G = 3,000) are much more spatially clustered than pathogen-risk adapted populations (B; G =
3,500), and are thus rapidly infected (red: primary infections; yellow: secondary infections; blue:
never infected). Pre-introduction individuals encounter manymore unique neighbours (inset
1, blue) than pathogen-risk adapted individuals (inset 1; red). Dashed grey line represents 10%
of individuals encountered (N = 50). Main panels show social networks from a single replicate
of the default scenario (R = 2, 𝛿𝐸 = 0.25), insets show 10 replicates. Nodes represent individuals
positioned at their final location. Connections represent pairwise encounters, and node size
represents encounters (larger = more encounters). Darker node colours indicate longer infection
(light blue = no infection). (C) In the first generations following pathogen introduction, nearly
every single individual in the population is infected. However, within 25 generations, tracking
the evolutionary shift towards movement strategies that avoid some or all other individuals, only
about 50% of individuals are ever infected; this drops to a stable 30% within 500 generations
after pathogen introduction. (D) The progression of two hypothetical diseases, requiring a single
encounter, or 10 encounters for a potential transmission, on emergent social networks. The
transmissionof bothdiseases is reduced inpopulationswithdisease-adaptedmovement strategies
(pre-introduction: G = 3,000, blue circles; post-introduction: G = 3,500, red triangles). Subfigures
in panel D showmeans of 25 SIR model replicates (transmission rate 𝛽 = 5.0, recovery rate 𝛾 =
1.0), run on emergent social network; both panels represent 10 simulation replicates the default
scenario.
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Pathogen-risk AdaptedMovement StrategiesMakeAnimal SocietiesMore

Resilient to the Spread of Disease

Nearly every individual in the generations just after pathogen introduction

was infected. However, tracking the evolutionary change in movement strate-

gies, the number of infected individuals fell to just about 50% within 25 gen-

erations (Fig. 5.3C). To examine potential pathogen spread in pre-introduction

populations, we ran a simple epidemiologicalmodel on the social networks emerg-

ing from individuals’ movements before and after pathogen introduction (pre-

introduction: G = 3,000; post-introduction: G = 3,500). Wemodelled two diseases,

(i) first, a disease requiring one encounter,and (ii) second, a disease requiring ten

encounters between individuals for a potential transmission event (transmission

rate 𝛽 = 5.0, recovery rate 𝛾 = 1.0).

Both the single encounter andmultiple encounter diseases would infect 75% –

80%of individualswhen spreading through the networks of pre-introduction pop-

ulations (Fig. 5.3D). Pathogen-risk adapted populations’ social networks aremore

resilient to both the single encounter andmultiple encounter disease, compared

to their pre-introduction, pathogen-risk naive ancestors, as these social networks

are sparser and individuals aremore weakly connected (Fig. 5.3D). Less than 60%

of post-introduction populations were finally infected by the single encounter

disease, compared with > 75% of pre-introduction, pathogen-risk naive ances-

tors; in pathogen-risk adapted populations, the spread of the multiple encounter

disease was even slower (ever infected: ≈ 20%).

Usefulness of Social Information and Infection Cost Influence Evolution of Social

Movement Strategies

We further explored the effect of two ecological parameters, landscape produc-

tivity (𝑅 ∈ 1, 2, 5) and infection cost per timestep (𝛿𝐸 ∈ 0.1, 0.25, 0.5) on simu-

lation outcomes. Before pathogen introduction, landscape productivity alone

determines the value of social information, and thus which social movement

strategies evolve (Fig. 5.4). On low-productivity landscapes (R = 1), social infor-

mation is valuable as direct resource cues are scarce; here, the handler-tracking

strategy persists. On high-productivity landscapes (𝑅 ∈ 2, 5), social information

is less valuable as individuals can directly detect food items more often; here,

the agent tracking strategy is most common. Across parameter combinations,

the introduction of the infectious pathogen leads to a rapid evolutionary shift

in social movement strategies. The benefits of social information, and infection

cost jointly determine how pathogen introduction alters the mix of social move-

ment strategies, but populations generally shift away from indiscriminate agent

tracking, as that strategy is associated with higher infection risk (see Fig. 5.3A).
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Figure 5.4: The balance of infection cost and the usefulness of social information together
shape the rapid evolutionary change inmovement strategies triggered bypathogen intro-
duction. Pre-introduction (G = 3,000; dashed line) populations contain a mix of individuals that
either track all foragers (agent tracking), or only successful foragers (handler tracking). Handler
tracking is more common on low-productivity landscapes (R = 1), where social information is
more useful to find patchily distributed resources. After pathogen introduction, handler tracking
rapidly becomes themost common strategy when the apparent usefulness of social information is
greater than the cost of infection. This occurs both when productivity is low (R = 1) and infection
costs are low (𝛿𝐸 = 0.1), but alsowhen productivity is high (R = 5)with intermediate infection costs
(𝛿𝐸 = 0.25). When the cost of infection outweighs the apparent usefulness of social information,
the agent avoidance (avoiding both successful and unsuccessful foragers) emerges and rapidly be-
comes a common strategy (𝛿𝐸 = 0.5; 𝛿𝐸 = 0.25, R = 1). In scenarios of high landscape productivity
combined with low infection costs (e.g. R = 5, 𝛿𝐸 = 0.1), the agent tracking strategy persists in a
large proportion after pathogen introduction, as these individuals can balance disease costs with
intake alone. All panels showmean frequencies over 10 replicate simulations in 100 generation
bins; frequencies are stacked. Grey areas show the relatively uncommon ‘non-handler’ tracking
strategy.

When the benefit of social information is equivalent to the cost of infection,

the handler tracking strategy is common (R = 1, 𝛿𝐸 = 0.1; R = 5, 𝛿𝐸 = 0.25). When

apparent social information benefits are lower than infection costs (e.g. 𝛿𝐸 =

0.5), the agent avoiding strategy is common. The effect of landscape productivity

in obviating a sensitivity to social information cues (especially, conspecific sta-

tus) is also eroded by pathogen introduction. On high-productivity landscapes



164 CHAPTER 5

where individuals were indiscriminately social, (𝑅 ∈ 2, 5, 𝛿𝐸 = 0.1), the handler
tracking strategy becomes common, as individuals prioritise higher-quality social

information (handlers, which indicate a resource cluster). However, high land-

scape productivity can also compensate for the cost of infection, as evidenced

by the agent tracking strategy remaining prevalent: this is only possible if these

individuals can consume sufficient resources to overcome disease costs.

Contextualising the Outcomes of the PathomoveModel

Our general model captures important features of infectious pathogen (or par-

asite) transmission among host animals in a (foraging) context that is relevant to

most species. The combination of ecological, evolutionary, and epidemiological

dynamics in a spatial setting is unprecedented for movement-disease models,

and extends current understanding of animal spatial and social ecology (Kurvers

et al. 2014; Webber and Vander Wal 2018; Romano et al. 2020; Albery et al. 2021;

Romano et al. 2021; Webber et al. 2022). Presently, most movement-disease

models are non-evolutionary (White et al. 2017; 2018b; Scherer et al. 2020; Lunn

et al. 2021), presumably because evolution is expected to be too slow to impact

epidemiological-ecological outcomes (Monk et al. 2022). We demonstrate the

pitfalls of this assumption: evolutionary transitions in sociality occur over fewer

generations than required for the development of key aspects of animal ecology,

such as migration routes (Jesmer et al. 2018; Cantor et al. 2021). We also demon-

strate the tension inherent to sociality under the risk of an infectious pathogen, in

an explicitly spatial context. Our work shows how qualitatively and quantitatively

different socialmovement strategies—making different trade-offs between social

information and infection risk — can co-exist in a single population (Wolf and

Weissing 2012; Webber and Vander Wal 2018; Gartland et al. 2021; Webber et al.

2022).

Social InformationUse and Pathogen Introduction

Prior to pathogen introduction, the value of social information influenced

which social movement strategies were evolved. Individuals initialised (‘born’)

near theirparent’sfinal locationmaybenefit from ‘ecological inheritance’ (Badyaev

and Uller 2009) of their parent’s favourable position near resource clusters (see

SI Appendix Fig. S2, S4). Avoiding potential competitors (and kin) thus correlates

with avoiding profitable areas, and this leads to the persistence of the indiscrim-

inately social agent tracking strategy, despite the evident costs of exploitation

competition. In an alternative implementation with large-scale natal dispersal,

handler tracking is the commonest strategy prior to pathogen introduction (see
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SI Appendix). Following pathogen introduction, the agent tracking strategy of our

default scenario allows the disease to spread very easily among entire lineages

of social individuals (see Fig. 5.3A) (Kurvers et al. 2014). This neatly demon-

strates why the risk of infection or parasitism could be among themechanisms

underlying density dependence in natal dispersal decisions (Travis et al. 1999).

Following pathogen introduction, the evolutionary shift in social movement

strategies is much more rapid than the timescales usually associated with the

evolution of complex traits such as sociality (about 25 generations). Avoiding

potentially infectious individuals is a key component of navigating the ‘landscape

of disgust’ (Weinstein et al. 2018). Our results show that sensitivity to cues of

high pathogen transmission risk can rapidly evolve following the introduction of

a novel pathogen, with a complete replacement of the hitherto dominant social

strategy. The emergence of qualitative individual variation in social movement

strategies, and especially the trade-off between movement, associations, and

infection risk also demonstrates the evolution of ‘sociability as a personality trait’

(Gartland et al. 2021).

We also find substantial individual variation in the quantitative importance

of social cues overall, which is a key component of the evolution of large-scale

collective behaviours, such as migration (Guttal and Couzin 2010). Our work

suggests how, by leading to the necessary diversity in social movement strategies,

a novel pathogenmay actually lay the groundwork for the evolution of more com-

plex collective behaviour. Nonetheless, the rapid decreases in social interactions

shouldprimarily prompt concern that the evolutionary consequences of pathogen

introduction could slow the transmission of, and erode, animal culture (Cantor

et al. 2021) — including foraging (Klump et al. 2021) andmigration behaviours

(Guttal and Couzin 2010; Jesmer et al. 2018). Pathogens themselves typically

have shorter generation times than their hosts, and may also evolve rapidly in

response to changes in host sociality (Ashby and Farine 2022). Although not

examined here, a mixture of social strategies could allow for the maintenance of

a corresponding diversity in pathogen strategies as well (Prado et al. 2009; Ashby

and Farine 2022).

Ecological Causes and Consequences of SocialMovement Strategies

In our model, landscape productivity (R), is a proxy for the usefulness of so-

ciality overall, as social information is less useful when direct resource cues are

abundant (high R). Social information benefits in disease models often have no

mechanistic relationship with the subject of the information (e.g. food or preda-

tors) (Ashby and Farine 2022). In contrast, social information benefits in our

model are emergent outcomes of animal movement and foraging behaviour. Our

predictions may help explain intra- and inter-specific diversity in social systems
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across gradients of infection risk and the usefulness of social information (Altizer

et al. 2003; Sah et al. 2018), and studies tracking social movements and poten-

tial for disease spread could form initial tests of our basic predictions (Wilber

et al. 2022). While our individuals do not die, the evolved pathogen-risk adapted,

dynamic social distancing strategies (Stockmaier et al. 2021) lead to a signifi-

cant worsening (equivalent to a halving) of individuals’ intake. In real systems,

this could increase populations’ susceptibility to extreme climate change related

mortality events (Fey et al. 2015).

More positively, animals may be able to adapt relatively quickly to the spillover

and eventual persistence of infectious pathogens, even when they cannot specifi-

cally detect and avoid infected individuals (Altizer et al. 2003; Stroeymeyt et al.

2018; Pusceddu et al. 2021; Stockmaier et al. 2021). While the most noticeable

effect of pathogen outbreaks ismassmortality (Fey et al. 2015), even quite serious

pathogens — Sarcoptic mange (Almberg et al. 2015), foot-and-mouth disease

(Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021), SARS-CoV-2 (Chandler

et al. 2021; Kuchipudi et al. 2022), and avian influenza (Global Consortium for

H5N8 and Related Influenza Viruses 2016; Wille and Barr 2022) among others

— appear to spread at sub-lethal levels for many years between lethal outbreaks.

Our model shows how disease-dominated ecological cascades (Monk et al. 2022)

could occur even without mortality effects, due to evolutionary shifts in sociality

alone. The altered ecological state (here, less resource consumption, as in Monk

et al. 2022) may be maintained long after — and indeed because— a population

has adapted to be less social in the presence of a pathogen. Our work suggests

that decreased sociality resulting from adaptation to a novel pathogen could slow

the transmission of future novel pathogens. While decreased sociality could also

reduce the prevalence of previously endemic pathogens adapted to a more social

host, it may also degrade ‘social immunity’ through reduced sharing of beneficial

commensal microbes, or of low, immunising doses of pathogens (Almberg et al.

2015; Ezenwa et al. 2016).

Feedbackswith Pathogen Chracteristics

Our model results are contingent upon sustained introduction of the pathogen

(or its novel strains) to host populations. More sporadic introductions (once every

few generations) apparently do not cause evolutionary shifts in social movement

(SI Appendix). Yet repeated pathogen and parasite introductions among suscepti-

ble populations appear to be quite common (Bastos et al. 2000; Vosloo et al. 2009;

Levi et al. 2012; Global Consortium forH5N8 andRelated Influenza Viruses 2016;

Scherer et al. 2020; Jolles et al. 2021; Wille and Barr 2022). Such introductions

are often detected only among easily observed groups such as birds (Wille and

Barr 2022), or after evident mass mortality events (Fey et al. 2015; Fereidouni
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et al. 2019). Seasonal host-pathogen dynamics could and do keep pathogens

circulating in reservoir hosts, with regular pulses in primary infections similar

to our model (e.g. due to new calves in African buffalo hosting foot-and-mouth

disease: Jolles et al. 2021, or winter peaks inmange among wolves: Almberg et al.

2015). Existing host-pathogen dynamics, and potential pathogen range expan-

sions, could thus provide more frequent opportunities for novel transmissions to

overlapping species than previously guessed. Ourmodel shows how this provides

a powerful selective force in favour of detecting and avoiding infection risk cues

(Weinstein et al. 2018).

Pathogens also typically have much shorter generation times than their hosts.

Analytical models expect pathogen attributes to rapidly co-evolve to match host

population attributes (e.g. sociality and immune resistance) (Bonds et al. 2005;

Prado et al. 2009; Ashby and Farine 2022). Suchmodels treat pathogens— just

as they do host animals — in relatively simple, non-mechanistic ways. Pathogens

are primarily expected to evolve to a virulence that promotes between-host trans-

mission (Bonds et al. 2005). Our mechanistic model does not explicitly consider

host-pathogen co-evolutionary dynamics, as this complexity was beyond the

scope of our general, conceptualmodel. Adding pathogen evolutionary dynamics

to a mechanistic individual-based model would require careful consideration of

(i) the costs the pathogen imposes on its hosts, and (ii) how it transmits between

hosts, both within and between generations. We expect that multiple pathogen

strategies could coexist in a host population that itself has multiple social move-

ment strategies.

TowardsHypothesis-testing and PredictiveModelling

In order to be widely applicable to diverse novel host-pathogen introduction

scenarios, our model is necessarily quite general. A wide diversity of pathogens

and their dynamics remains to be accurately represented in individual-based

models (White et al. 2017; 2018b; Scherer et al. 2020; Lunn et al. 2021). Our

framework can be expanded and specifically tailored to real-world situations in

which populations are repeatedly exposed to novel pathogens (or strains) (Bastos

et al. 2000; Scherer et al. 2020; Chandler et al. 2021; Jolles et al. 2021; Kuchipudi

et al. 2022; Wille and Barr 2022). Such detailed implementations could include

aspects of the pathogen life-cycle (White et al. 2017; 2018a), account for sociality

as a counter to infection costs (Almberg et al. 2015; Ezenwa et al. 2016), or model

host-pathogen sociality-virulence co-evolution (Bonds et al. 2005; Prado et al.

2009; Ashby and Farine 2022). We generate consistent predictions of marked

and swift evolutionary shifts in social movement strategies that could plausibly

be tested over the timescales of some long-term animal tracking studies (Wilber

et al. 2022).
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Importantly, our social information-basedmovement strategies are made up

of continuous values that place individuals on a two-dimensional trait space of

relative preferences (or aversions) for successful and unsuccessful foragers (see

Model and Analysis; Bastille-Rousseau andWittemyer 2019). Such social move-

ment strategies could already be revealed for free-living animals using newer

step-selection approaches (Avgar et al. 2016), combined with the simultaneous,

high-throughput tracking of many hundreds of animals in an area (Nathan et al.

2022). Future work would ideally combine wildlife monitoring andmovement

tracking across gradients of pathogen prevalence, to detect novel cross-species

spillovers (Chandler et al. 2021; Kuchipudi et al. 2022) and study the spatial and

epidemiological consequently of animal movement strategies (Bastille-Rousseau

andWittemyer 2019; Monk et al. 2022; Wilber et al. 2022). Given that infection

patterns can change rapidly in space even in small, well-mixed populations (Al-

bery et al. 2022), the systems that could be used to test these phenomena may

be widespread and easily available. Finally, our model shows why it is important

to consider evolutionary responses in movement-disease studies, and provides

a general framework to further the integration of evolutionary approaches in

wildlife spatial epidemiology.

-.-
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Figure 5.5:Model implementation of discretemovement steps in continuous space,with
movement steps selectedbasedon inheritedpreferences for environmental cues. In our
model, (A) individuals search for food items (green circles), whichmay be immediately available
(filled green circles; F), or may be available only in the future (open green circles). Individuals
can sense only available items, and not unavailable ones. However, given our landscape structure,
food items are clustered, making available items a good indicator of where resource clusters are
(see next figure). Individuals can also sense other foraging individuals, and can sensewhether they
have successfully found, and are handling, a food item (handlers; blue circles), or whether they
are unsuccessful foragers still searching for food (non-handlers; filled grey circles;N). To decide
where to move, individuals sample their environment for these three cues (F, H, N) at 5 locations
around themselves (large open grey circles), and have a sensory range of 𝑑𝑆. When the sensory
range is relatively large (default = 1.0 units), there is some small overlap in samples. Individuals
assign each potential direction a suitability, 𝑆 = 𝑠𝐹𝐹 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁 + 𝜖, where the coefficients
𝑠𝐹, 𝑠𝐻, 𝑠𝑁 are inherited preferences for environmental cues, and 𝜖 is a small error term that helps
break ties between locations. In our implementation, the sensory distance (𝑑𝑆) and themovement
distance (𝑑𝑀) are the same, 1.0 units. (B)Our infectious pathogen is transmitted between infected
(orange circles) and susceptible (filled grey circles) individuals, with a probability 𝑝 = 0.05,
when they are within a distance 𝑑𝛽 of each other. In our implementation, 𝑑𝛽 is the same as 𝑑𝑆, 𝑑𝑀
= 1.0 units.

169
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Figure 5.6: An example of the resource landscape used in our simulations. Our simulation’s
resource landscape consists of 60 randomly distributed clusters of food items (‘resource patches’),
with 1800 discrete food items divided among the clusters (30 items per cluster). The landscape is
a square of 60 units per side, with wrapped boundaries (i.e., a torus). The food item density in our
scenarios is 0.5 food items per unit area. Items are distributed around the centre of each cluster,
within a standard deviation of 1.0 unit. Items, once consumed by foragers, are unavailable for a
fixed number of timesteps (the regeneration time 𝑅, expressed in terms of the foragers’ generation
time), after which they regenerate in the same location. While regenerating (i.e., unavailable).
While regenerating, items cannot be sensed by foragers. The sensory ranges of individuals (𝑑𝑆)
are shown for each potential step (red circles, including the current location: blue circle). Food
item clustering means that available items, as well as foragers handling a food item (handlers) are
good indicators of the location of a resource cluster.
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Figure5.7:Rapidchanges inecological outcomes followingpathogen introduction. The in-
troduction of the infectious pathogen leads to rapid evolutionary changes inmovement strategies
(see Figures 1 and 5; main text) acrossmost combinations of landscape productivity and infection
cost. In all combinations where there is rapid evolutionary shift in social-movement strategies,
there is a similar change in the population’s ecological outcomes: more movement, less intake,
and fewer associations. Only in scenarios where the mix of social-movement strategies does not
change (𝑅 ∈ 2, 5; 𝛿 𝐸 = 0.1), is there broadly no change in population ecological outcomes. Each
subplot in each panel shows the mean and standard error of the per-capita values for (A) distance
moved, (B) intake, (C) number of associations, or encounters, with other individuals. Means and
standard deviations are shown before (G = 3,000) and after (G = 3,500) pathogen introduction;
each data point represents 10 replicates of the relevant parameter combination.

Effect ofModelling Choices

Modelling choices can have a substantial effect on the outcomes of simulations

with multiple, complex interactions among components (Scherer et al. 2020;

Gupte et al. 2021;Netz et al. 2021b). We showtheeffect of varying implementation

on two key aspects of ourmodel: (1)where individuals are initialised, or ‘born’, on

the landscape (natal dispersal), (2) how the infectious pathogen imposes fitness

costs.

Global Natal Dispersal of Individuals

Somemodels initialise the individuals in each new generation at random loca-

tions on the landscape (see e.g. 2021; Chapter 4); this can be called ‘global’ natal

dispersal. This is a reasonable choice whenmodelling animals during a specific

stage of their life cycle, such as after arriving on a wintering or breeding site after

migration. Our default choice, on the other hand, is ‘local’ natal dispersal, where

individuals are initialised close to their parent’s last position. This is also defen-

sible, as many organisms do not disperse very far from their ancestors. When

animals do not disperse very far, theymay not evolve movement rules that can

be generalised across all landscape conditions, especially when the landscape is

ecologically heterogeneous. Instead, animals may adapt their strategies to the
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local conditions which they inherit from their parents (‘ecological inheritance’;

Badyaev and Uller 2009).

Successful individuals are likely to have more offspring than unsuccessful indi-

viduals, and successful individuals are likely to be found— in our simulation and

in real natural systems— on or near profitable resource patches. This means that

many individuals are initialised near profitable patches. In this case, and because

of the sparse distribution of resource patches on the landscape, individuals adapt

to tolerate their many neighbours (who are often kin), as avoiding themwould

lead to also moving away from a profitable patch.

By forcing animals in each new generation to encounter ecological circum-

stances potentially different from those of their parents, implementing global

dispersal can help investigate whether animals’ evolved movement strategies are

truly ‘optimal’ at the global scale. We implementated global dispersal by running

10 replicates of each parameter combination (9 combinations of 𝛿 𝐸 and 𝑅; 90
simulations in all), with dispersal set to 10. This means that individuals’ initial

positions are drawn from a normal distribution with standard deviation = 10,

centred on the location of their parent (see Fig. 5.8; blue circles).

Evolutionary Outcomes of the Global Dispersal Implementation

In the global dispersal scenario (see Fig. 5.8), there is a marked difference in

which social movement strategy is evolved before pathogen introduction. Since

individuals are initialised relatively far away from their parent’s position, they

encounter potentially very different ecological conditions, both in terms of the

number of other individuals, and the local availability of food items.

As a result, most individuals evolve a ‘handler tracking’ social movement strat-

egybefore the introductionof thenovelpathogen. This strategyallows individuals

to gain the benefits of social information on the location of a resource patch (of

which handlers are an indirect cue), while avoiding potential competitors, as well

as potentially moving away from areas without many food items.

After pathogen introduction, there is a rapid evolutionary shift in social move-

ment strategies, similar to the shift seen in our default implementation of local

dispersal. However, these shifts only occur under conditions where the cost of

infection is apparently greater than the value of using social information to find

food items. In brief, (1)when the benefits of social information cannot compen-

sate for the costs of infection risk (𝛿𝐸 = 0.5; 𝛿𝐸 = 0.25, and R = 1, 2), the agent

avoiding strategy becomes more prevalent, similar to the local dispersal case. (2)

When the costs of infection are lower than the benefits of social information, or

when the resource landscape’s productivity can offset the cost of infection, the

handler tracking strategy persists as the dominant strategy (see Fig. 5.9).



DISEASE &MOVEMENT 173

Figure5.8:Differencesbetweenlocalandglobaldispersal. Initialising individuals in eachnew
generation within a standard deviation of 10 units around their parent (blue; parent at [30, 30])
places can lead them to encounter potentially very different ecological, and social, circumstances
from those of their parent. In contrast, individuals initialised close to their parents (within a
standard deviation of 2 units; red) encounter very similar conditions as their parent. The latter
also leads to substantial competition among kin. We used 10 units to represent (nearly) global
dispersal, and 2 units to represent local dispersal; this is controlled by the simulation parameter
dispersal, which takes a numeric argument.
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Figure 5.9: Pathogen introduction triggers similar evolutionary changes under global
dispersal as under local dispersal. In our alternative, global natal dispersal implementation,
the handler tracking strategy is the dominant strategy across most parameter combinations prior
to pathogen introduction. Following pathogen introduction, there is a rapid shift in the mix of
movement strategies under some ecological conditions. When the cost of infection is greater than
the apparent benefit of social information, the agent avoiding strategy becomes more common.
When infection costs are low (𝛿𝐸 = 0.1), pathogen introduction does not alter themix ofmovement
strategies, and the handler tracking strategy continues to be the most common strategy.
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Figure 5.10: Little to no change in ecological outcomeswhen implementing global disper-
sal. Despite strong and rapid evolutionary shifts in social movement strategies, the ecological
outcomes for populations with global natal dispersal are very similar before and after the intro-
duction of the infectious pathogen. Each subplot in each panel shows the mean and standard
error of the per-capita values for (A) distance moved, (B) intake, (C) number of associations,
or encounters, with other individuals. Means and standard deviations are shown before (G =
3,000) and after (G = 3,500) pathogen introduction; each data point represents 10 replicates of
the relevant parameter combination.

Ecological Consequences in the Global Dispersal Implementation

In theglobaldispersal implementation, there is little tonochange inpopulation-

level ecological outcomes—mean distance moved, mean per-capita intake, and

the mean number of associations — following pathogen introduction (Fig. 5.10).

This is despite the drastic shift in evolved social movement strategies. This is

likely because a large part of individual’s lifetimes (at low 𝑅, up to 90 timesteps),

are spentmoving, likely to find resource clusters. Since intake depends on finding

these clusters, and associations mostly take place at or near resource clusters,

these are also reduced compared to our local dispersal implementation.

Infection Cost as a Percentage of Intake

In our model’s default implementation, the infectious pathogen imposes a

direct cost, 𝛿 𝐸, on individuals, in each timestep that they are infected. For an in-

dividual with intake𝑁, the net energetic gain 𝐸 after being infected by a pathogen
for 𝑡 timesteps is 𝐸 = 𝑁 − (𝛿𝐸 × 𝑡). In this scenario, infection costs are independent
of intake.

In an alternative implementation, the infectious pathogenmay be considered

to reduce an animal’s ability to process intake, or to require a portion of daily

intake to resist. Such an implementation is used in…For an individualwith intake

𝑁, the net energetic gain 𝐸 after being infected by a pathogen for 𝑡 timesteps is

𝐸 = 𝑁 × (1 − 𝛿𝐸)𝑡. Naturally, the two cost structures are not easy to compare, but

a comparison of the potential outcomes is shown in Fig. 5.11.
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Figure 5.11:Calculated net energy for different combinations of intake and time infected. In the
Direct cost scenario, and with a 𝛿 𝐸 of 0.25 (shown here), which is our default implementation, an
individual foraging on an item (handling time = 5 timesteps) would gain 1.0 unit of intake, and
lose 1.25 units of energy in that same period if it were infected, for a net energy balance in that
period of -0.25. Individuals’ energetic balance is normalised (0 – 1) with reference to the lowest
value in each generation. Here, individuals’ infection cost is independent of their intake. In the
percentage cost scenario, individuals’ infection costs are linked to their intake. For a per-timestep
5% loss of intake (shown here), individuals infected for >25 timesteps already have a net energy
balance close to, but never less than, zero. In this implementation, individuals’ energy balances
are not normalisedwith reference to the lowest net energy, as no individual’s energy is ever less
than zero.

Evolutionary Outcomes of the Percentage Cost Implementation

The social movement strategies evolved prior to pathogen introduction are

identical to those seen in our default implementation. This is because the per-

centage cost implementation differs from the default only after the pathogen is

introduced. After pathogen introduction, there is a rapid evolutionary shift in

movement strategies. This shift is similar to that in our default implementation,

but the strategies evolved are different. The handler tracking strategy becomes

common across parameter combinations. However, when the costs of infection

are relatively high (7.5%), and the usefulness of social information is limited by

the abundance of food items (R = 5), the agent avoiding strategy forms about one

fourth of the populationmixture of social movement strategies

Ecological Consequences in the Percentage Cost Implementation

Surprisingly, the implementation of a different cost structure for the novel,

infectious pathogen does not affect ecological, population level outcomes when

compared with outcomes in our default implementation of direct costs. Across

parameter combinationswhere there is a rapid evolutionary transition fromagent

tracking to handler tracking as the dominant strategy, there is also an increase in

distance moved, a reduction in intake, and a reduction in associations. Notably,

the reductions in per-capita intake following pathogen introduction are similar to
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Figure 5.12: Rapid evolutionary change, but different evolutionary outcomes, in an alter-
native implementation of disease costs. In our alternative, percentage costs implementation
of the infectious pathogen, there is a rapid shift in the mix of movement strategies after pathogen
introduction. The handler tracking strategy becomes common across all parameter combina-
tions. Only when the costs of infection are relatively high (7.5%), and the usefulness of social
information is limited by the abundance of food items (R = 5), does the agent avoiding strategy
form about one fourth of the populationmixture of social movement strategies.
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Figure 5.13: Rapid ecological changes accompany evolutionary shifts in an alternative
implementationof disease costs, and are similar to the default implementation. In the
alternative percentage-costs implementation of the infectious pathogen, the outcomes are very
similar to those in our default implementation of direct costs. Across most parameter combina-
tions, there is an increase in movement, a reduction in intake, and a reduction in associations
with other foragers. Each subplot in each panel shows the mean and standard error of the per-
capita values for (A) distance moved, (B) intake, (C) number of associations, or encounters, with
other individuals. Means and standard deviations are shown before (G = 3,000) and after (G =
3,500) pathogen introduction; each data point represents 10 replicates of the relevant parameter
combination.

a halving of landscape productivity (as in the default implementation), and there

is a comparable drop in the number of pairwise associations among individuals.

Sporadic Introduction of Infectious Pathogens

We implemented a variant of ourmainmodel, inwhich the infectious pathogen

is introduced only sporadically after the first introduction event (at G = 3,000).

Specifically, we modelled probabilistic introduction of the pathogen in each gen-

eration following the initial introduction. We call the per-generation probability

of a novel pathogen introduction event the ‘spillover rate’. We ran 10 replicates

each of thismodel variant and examinedwhether therewas a similar evolutionary

shift in social movement strategies as seen in our default implementation. Since

it is the main parameter of interest, we ran this model variant for three values

of the spillover rate: 0.05, 0.1, and 0.25. Instead of examining the joint effect

of landscape productivity and cost of infection as well, we only examined the

effect of infection cost, implementing three different variants with an infection

cost 𝛿𝐸 of 0.1, 0.25, and 0.5. We kept all other model parameters similar to the

default scenario of ourmainmodel, and importantly, considered only a landscape

productivity 𝑅 of 2. Cross-species novel pathogen introductions are likely to be-

comemore common with climate change, and so we chose these spillover rate

values to represent different scenarios under altered global regimes of pathogen
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transfer. Our model’s default implementation may be seen as an extreme case of

the models considered here, with a spillover rate of 1.0.

In our model code, the sporadic introduction is implemented by drawing the

number of generations until the next pathogen introduction event from a geo-

metric distribution whose probability parameter is given by the spillover rates

described above. Zero values are handled by converting them into ones. At our

lowest spillover rate, up to 100 generations could pass between pathogen intro-

ductions, while at our highest rates, there are rarely more than 10 generations

between introductions.

The social movement strategies evolved prior to pathogen introduction are

identical to those seen in our default implementation, as expected. However,

following pathogen introduction, we found that there was little to change in

the population-level mixture of movement strategies in this model variant (see

figure). This is regardless of the probability of a novel pathogen introduction

(our so-called ‘spillover rate’), and the cost of infection by a pathogen. Across the

simulation, the commonest social movement strategy remains ‘agent tracking’,

i.e., preferring locations with multiple individuals regardless of their foraging

status. Since there is little to no change in social movement strategies, we did not

expect nor find changes in ecological outcomes.

-.-
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Figure 5.14: No evolutionary change in socialmovement strategieswhennovel pathogen
introduction events are relatively uncommon. (A) In our alternative implementation of the
model, the pathogen is only introduced sporadically after the initial introduction (G = 3,000; red
line in panel B). (B)When the introductions are relatively rare and sporadic, there is no shift in
the mixture of movement strategies after pathogen introduction. The agent tracking strategy
remains common across parameter combinations.
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We can only see a short distance ahead, but we can see plenty there that needs to be

done.

– fromComputingMachinery and Intelligence, by Alan Turing.

Abstract

Movement ecologists have takenup the challenge of inferring animals’ decision-

makingmechanisms in a spatial context from individual tracking data. The im-

plicit assumption is that differences in the movement paths of animals reflect

differences in individual decision-makingmechanisms. However, animal move-

ment takes place in complex and rapidly changing environments, where move-

ment cues are not always available, and animals may differ alongmultiple axes of

behaviour. Mechanistic, individual-basedmodelling of animal decision-making

canhelp investigatewhether differences indecision-makingmechanismsactually

translate into differences in movement paths, and the insights gained by parsing

animal tracking data using contemporary statistical methods. To show how such

amodel can be used to investigate statisticalmethods, we explore a contemporary

question inmovement ecology: Can individual differences inmovement decision-

makingmechanisms be detected from the emergent properties of the resulting

movement paths? Using data on the movement of evolved model agents, we

show how adopting a repeatability framework to quantify individual-differences

inmovement is sensitive to the evolutionary context in whichmovement rules

evolve. We also find that repeatability analysis can yield very different conclu-

sions depending on how individuals’ behavioural types are accounted for. We also

show that step-selection analysis can indicate differences between competition

strategies, but rarely captures differences betweenmovement types of the same

competition strategy. Overall, using a plausible eco-evolutionarymodel of animal

decision-making, we highlight some challenges in using contemporary statistical

methods to infer individual differences in animals’ decision-makingmechanisms

from positioning data.
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Introduction

A
NIMALmovement is understood to be an individual response that integrates

multiple internal and external stimuli, including environmental conditions

and the presence of other animals (Nathan et al. 2008). Various aspects of animal

movement, such as the distance moved over time (speed), or the tortuosity of an

animal’s path, are now readilymeasured and quantified in free-living individuals,

given significant advances in animal tracking technology (Cagnacci et al. 2010:

see Nathan et al. in prep.). This makes movement a sort of ‘model behaviour’

that allows investigation of the underlying mechanisms— the ‘how’ and ‘why’ of

animal decision-making— under natural conditions that cannot be replicated in

experimental settings. For example, tracking individual greenbuls Phyllastrephus

sp. in forested landscapes revealed that greenbuls moved more frequently to

trees that were actually visible from their position, rather than trees that were

obscured from view, indicating that visual cues are important in the movement

decisions of forest birds (Aben et al. 2021: see also ). This illustrates a general

tactic in animal movement studies, which is to treat an animal’s use of a resource

disproportionate to its availability (Fortin et al. 2005; Manly et al. 2007; Signer

et al. 2019), or prolonged residence in an area (Bracis et al. 2018) as indicators of

adaptive movement decision-makingmechanisms. Simple simulationmodels

show that differences in movement patterns — such as path metrics, or emergent

social interactions —may reflect underlying differences in movement strategies

(Spiegel et al. 2017; Spiegel and Pinter-Wollman 2022; Stuber et al. 2022).

Both differences in movement strategies, or the mechanisms controlling move-

ment (Spiegel et al. 2017), and differences in movement paths, which are the

outcomes ofmovementmechansims (Abrahms et al. 2017; Hertel et al. 2021), are

interpreted as facets of animal personality (Sih et al. 2004a,b). Increasingly how-

ever, animal personality, or consistent individual differences in behaviour, are

studied in empirical terms, and considered to be detected in a population when

its behavioural responses possess certain statistical properties (Sanchez-Tojar

et al. 2021). In the context of animal movement, researchers apply sophisticated

variance-partitioning approaches to commonmovement metrics — such as daily

distance moved— and aim to determine howmuch behavioural variation in a

population is explained by individual identity, rather than conditions that di-

rectly influence behaviour (e.g. diel cycle, temperature), or variation due to other,

un-examined factors (e.g. weather differences between intervals) (Hertel et al.

2019; 2020; 2021). Another approach to investigate individual animals’ decision-

makingmechanisms is to estimate their relative preferences for environmental

conditions using step-selection analysis (Fortin et al. 2005; Thurfjell et al. 2014;

Avgar et al. 2016; Signer et al. 2019; Fieberg et al. 2021: see also resource selec-
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tion analysis: ). Step-selection analysis compares environmental cues between

animals’ real steps — the movements actually made, and their alternatives — the

movements that could have beenmade, from the same starting location (Thurfjell

et al. 2014; Fieberg et al. 2021). The relative selection strengths, which are the

coefficients of a step-selection function, can be compared between individuals

(Thurfjell et al. 2014), and should be expected to be different for individuals with

different movement decision-makingmechanisms.

However, it is unclear whether individual consistency in the mechanisms un-

derlying movement strategies can really be identified using current statistical

tools (Spiegel and Pinter-Wollman 2022; Stuber et al. 2022). Most researchers

realise that there is a substantial gap between the environment animals perceive

and to which they respond, and the often static representation of that environ-

ment that is measured in tracking studies (Spiegel and Pinter-Wollman 2022).

For example, resources that are critical to animals are often ephemeral, and dif-

ficult to measure with both a high spatio-temporal extent and resolution using

existing technologies such as remote sensing, leading researchers to fall back on

more long-term resource proxies such as vegetation indices (Pettorelli et al. 2011).

This issue is likely evenmore acute in the case of movements that have a social

context, such as competition, as the social environment is expected to change

evenmore rapidly than resource distributions, and to be evenmore sensitive to

local consumer densities. Consequently, it may be difficult to determine whether

differences inmovement reflect underlying differences in decision-makingmech-

anisms, or whether they better represent stochastic differences in environmental

conditions encountered by animals (Spiegel and Pinter-Wollman 2022). Applying

current methods in animal movement ecology to individual-based simulation

models of animal movement strategies (see e.g. Getz et al. 2015; 2016; Netz et al.

2021b) can help explore whether these methods can reliably detect individual

differences in movement decision-makingmechanisms.

Mechanisticmodels of intermediate complexity can simulate themain features

of many spatial systems, such as heterogeneity in landscape productivity, and

resource depletion due to mobile consumers (Getz et al. 2015; White et al. 2018b;

DeAngelis and Diaz 2019; Diaz et al. 2021; Netz et al. 2021b). Here, we work with

an evolutionary, individual-based model of agent movement in the context of

intraspecific competition (both exploitation and interference, as described in

Chapter 4). In our model, agent movement is the outcome of the interplay of

simple movement decision-making mechanisms, a fluctuating resource land-

scape, and due to agent movement, a variable social landscape. Agent movement

strategies are controlled by their preferences for environmental cues, such as

resource and competitor densities (see e.g. Getz et al. 2015; White et al. 2018b;

Netz et al. 2021b). These preferences may be thought of as the coefficients of
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resource- or step-selection functions (White et al. 2018b). Importantly, in con-

trast with purely ecological models (e.g. White et al. 2018b), agents’ preferences

are outcomes of many generations of natural selection (see also Getz et al. 2015;

Netz et al. 2021b). We previously showed that in two scenarios of exploitation

and interference competition, differences among individuals in how they assess

local environmental cues evolve.

We tackle three specific aspects of a general question in animal movement:

what can applying statistical tools to animal tracking data tell us about individual

differences in themovement decision-makingmechanisms? (1)We first exam-

ine whether different movement types are indicated by simple exploratory data

analysis. (2)We then investigate the results of a variance-partitioning approach

(repeatability analysis; Nakagawa and Schielzeth 2010; Hertel et al. 2019) to

detecting individual differences in populations with different movement types

and competition strategies. (3) Finally, we attempt a novel application of step-

selection analysis to the study of consistent individual differences in movement

strategies. Overall, by treating a simulationmodel with simplemovement rules as

we would empirical animal-tracking data, we aim to explore whether individual

differences in movement decision-makingmechanisms can be reliably inferred

from the emergent structure of animal movement paths.

Methods

BasicModel Setup

Weworked with an individual-based evolutionary simulation model of animal

movement in a foraging context, previously developed for use in Chapter 4. We

describe the model’s ecological dynamics in brief here, and refer readers to Chap-

ter 4 for a more detailed exploration of the evolutionary outcomes. Our model

simulates a population with a fixed size (10,000 individuals), moving on a finely

gridded landscape of 5122 cells; this is a population density of 1 individual for

every 26 cells. The landscape is wrapped at the boundaries so that individuals

passing beyond the bounds at one end re-appear on the diametrically opposite

side. The model consists of 𝐺 generations (default = 250) of 𝑇 timesteps (default

= 400); in each generation, individuals move and make foraging decisions to

gain intake. At the end of each generation, individuals reproduce and pass on

their movement and foraging strategies to their offspring, the number of which is

proportional to their intake in the 400 timesteps of their ‘lifetime’.

The cells of the gridded landscape each have a cell-specific probability 𝑟 of
generating a discrete resource, which we refer to as ‘prey items’ (e.g. a mussel).

The cells are arranged into 1,024 regularly spaced clusters, or ‘resource peaks’, in
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which the productivity of cells at the centre of the peak (called 𝑟𝑚𝑎𝑥) is five times

greater than the cells at the periphery of the peak; resource peaks are approxi-

mately 16 cells away from each other. We ran the model with a default 𝑟𝑚𝑎𝑥 of

0.01, and also at 𝑟𝑚𝑎𝑥 values between 0.001 and 0.03, to examine the effect of

landscape. For an 𝑟𝑚𝑎𝑥 = 0.01, themost productive cells (at the centres of a cluster)

are likely to generate one item per 100 timesteps (or four items per generation,

for 𝑇 = 400), while the least productive cells (at cluster peripheries) are likely to
generate one item every 500 timesteps (< than one item per generation, for 𝑇 =
400). Cells in our landscape weremodelled as having a uniform carrying capacity

𝐾 of 5 prey items, and while a cell is at carrying capacity its 𝑟 is 0.

Individual Foraging andMovement

Agents can perceive a cue indicating the number of all prey items 𝑃 in a cell,

but have a probability 𝑞 of failing to detect a prey item, and a probability 𝑞𝑃 of not
detecting any of 𝑃 prey items; foragers are thus successful in finding a prey item

with a probability 1 − 𝑞𝑃. Individuals on a cell forage in a randomised sequence,

and theprobabilityoffindingaprey item(1−𝑞𝑃) is updatedas individualsfindprey,
reducing 𝑃. Foragers that are assigned a prey item in timestep 𝑡 begin handling it,

and are considered to be handlers for the next 𝑇𝐻 timesteps, during which they

are immobile: this creates opportunities for kleptoparasitism (Holmgren 1995).

Foragers that are not assigned a prey item are considered idle, and are counted as

non-handlers.

Agent movement is a fine-scale process comprised of small, discrete steps

of fixed size. These steps are the outcome of short-term individual movement

decisions, in which the agent selects a destination cell, after assessing potential

destinationsbasedonavailable cues (similar to step selectionor resource selection

Fortin et al. 2005; Manly et al. 2007), an approach used previously by Getz et al.

2015 and White et al. 2018b. In brief, individuals scan the nine cells of their

Moore neighbourhood for three environmental cues, (1) an indication of the

number of discrete prey items 𝑃, (2) the number of individuals handling prey𝐻
(called ‘handlers’), and (3) the number of individuals not handling prey𝑁 (called

‘non-handlers’). Based on these cues, agents rank their neighbouring cells by their

‘suitability score’ 𝑆, where 𝑆 = 𝑠𝑃𝑃 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁, andmove to the cell to which they

have individually assigned the highest suitability. The weighing factors for each

cue, 𝑠𝑃, 𝑠𝐻, and 𝑠𝑁, are genetically encoded and and transmitted from parents to

their offspring. All individuals move simultaneously, and then implement their

foraging strategy to acquire prey.
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Scenarios of Intraspecific Competition

We considered two scenarios of intraspecific foraging competition, a process

that can strongly shape animal movement and population distributions (Fretwell

and Lucas 1970; Parker 1978). In the exploitation competition scenario1, agents

move about on the landscape according to their movement rules, and find, han-

dle, and consume prey. Agents must handle each prey item for a fixed handling

time 𝑇𝐻 (default = 5) before they gain its energetic value. Agents can be either

in the handling or searching state (Holmgren 1995). While handling, agents are

immobile and do notmake anymovements. Since there are no direct interactions

among agents, the only way in which agents can affect each others’ intake is by

acquiring prey items before their competitors. In this scenario, the only evolv-

able properties are the environmental cue weighing factors which determine the

suitability scores and hence agent movement (𝑠𝑃, 𝑠𝐻 and 𝑠𝑁).

In scenario 2, agents can either search for prey items (foraging), or steal a prey

item from a handler (kleptoparasitism). Agents make movement decisions as in

the exploitation competition scenario, but their competition strategy (foraging

or kleptoparasitism) is fixed through life, genetically encoded, and heritable

between generations. For simplicity, agents are always successful in stealing from

a handler; however, if multiple agents target the same handler, only one of them,

randomly selected, is considered successful — thus kleptoparasitic agents also

compete exploitatively among themselves. Handlers that have been stolen from

subsequently ‘flee’ and are moved to a random cell within a Chebyshev distance

of 5. Having acquired prey, a kleptoparasite converts into a handler, but need

only handle prey for 𝑇𝐻 − 𝑡ℎ timesteps, where 𝑡ℎ is the time that the prey has

already been handled by the previous handler; thus kleptoparasites save time

on handling compared to a forager. Unsuccessful kleptoparasites are considered

idle, and are also counted as non-handlers. Handlers that finish processing their

prey in timestep 𝑡 return to the non-handler state and are assessed as such by

other individuals when determining their movements.

Inheritance ofMovement and Competition Rules

For simplicity, wemodelled discrete, non-overlapping generations, with hap-

loid, asexually reproducing individuals. In the exploitation competition scenario,

individuals have three active gene loci that encode the decision-making weights

which control individual movement (𝑠𝑃, 𝑠𝐻, 𝑠𝑁). In scenario 2, individuals addi-
tionally inherit their competition strategy from their parent. We assume that the

expected number of offspring per individual is proportional to the individual’s

total lifetime intake of resources (hence resource intake is used as a proxy for

fitness). This is implemented as a weighted lottery (with weights proportional to
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lifetime resource intake) that selects a parent for each offspring in the subsequent

generation (see prior implementation in Netz et al. 2021b). Across scenarios,

the movement decision-making weights are subject to independent randommu-

tations with a probability of 0.001. Themutational step size (either positive or

negative) is drawn from a Cauchy distribution with a scale of 0.01 centred on zero.

This allows for a small number of very largemutations while themajority ofmuta-

tions are small. In scenario 2, agents have a probability of 0.001 of a mutation on

their competition strategy, i.e., of transforming from a forager to a kleptoparasite,

or vice versa. Agents are intialised at a random location on the landscape, po-

tentially forcing individuals to contend with different environmental conditions

from those experienced by their parent.

Agent Positions, Agent Preferences, and LandscapeData

We previously established that in our model, the mean per-capita intake sta-

bilises within 50 generations, and the fixation of certain movement rules (such

as the preference for handlers) is complete by generation 100 (see Fig. 1). We

wanted to determine whether agent path structure, and specifically, the distance

moved, also has a clear trajectory over generations. In order to do this, we focused

on the positions of 1% of the agents (N = 100) in each timestep, for every 10th

generation, up to generation 249 (25 generations, including G = 249). Overall,

we collected 400 × 100 × 25 = 1,000,000 positions over each simulation run. To

applymethods commonly used inmovement analyses, we let the final generation

(G = 250) run for 10,000 timesteps, and exported the positions of 100 agents in

each timestep, for a further 10,000× 100 = 1,000,000 positions. We also exported

the decision-making weights for movement (𝑠𝑃, 𝑠𝐻, 𝑠𝑁) for each agent in the ex-

ploitation competition scenario, as well as the foraging strategy-decision weights

(𝑤𝑃,𝑤𝐻,𝑤𝑁,𝑤0) for agents in the interference competition scenario; we aimed to

later relate these weights to the structure of movement paths.

Animal movement is strongly influenced by the landscape, andmust be taken

into account to accurately compare among individuals. The cell 𝑟 values may be

seen as analogous to empirically measured long-term indicators of productivity,

such as the normalised-difference vegetation index (NDVI; Pettorelli et al. 2011).

We took the known, fixed 𝑟 values for each cell, and linked them to agent positions

as environmental covariates. Animals likely cannot always sense underlying

differences in the drivers of productivity of a resource landscape, but only an in-

dicator of that productivity, such as prey items. Nonetheless, long-termmeasures

are frequently used as predictors in step-selection functions, because they are

often easy to measure, and do have a mechanistic link with animal movement.
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QuantifyingModel Ecological Outcomes

Wefirst plotted the frequencies of the decision-makingweights, scaled between

-1 and +1 using a hyperbolic tangent tranform, over the 250 generations of each

model run (see Fig. 6.1A). We then visually examined the population at the evolu-

tionary equilibrium for functional differences in movement rules. Since distinct

values, or morphs, of each weight might be correlated with distinct values of the

other two weights, agents with seemingly different absolute values of the three

weights could have the same relative preference for, or aversion to, a movement

cue. We did this by normalising each of the agents’ three movement weights

relative to the sum of the absolute values of the weights: 𝑊𝑖 = 𝑊𝑖/(|𝑠𝑃| + |𝑠𝐻| + |𝑠𝑁|),
where 𝑊𝑖 is any one of the movement weights, 𝑠𝑃, 𝑠𝐻 or 𝑠𝑁. We refer to these

normalised weight values (ranging from -1, avoidance, to +1 preference) as the

relative preferences. Thus, for example, an agent prioritising movement towards

handlers would have a normalised value for 𝑠𝐻 close to +1, and 𝑠𝑃 and 𝑠𝐻 ≡ 0. To

visualise the spread of agents over the trait space, we plotted the scaled values of

𝑠𝐻 against the scaled values of 𝑠𝑃, colouring points by the scaled value of 𝑠𝑁 (see
Fig. 6.1A).

We classified the 100 agent paths exported in each simulation run based on the

agents’ relative preferences: (1) prey tracking, if 𝑠𝑃 > 0.55; (2) handler tracking, if
𝑠𝐻 > 0.5; (3) prey & handler tracking, if 𝑠𝑃 > 0, 𝑠𝐻 > 0, |𝑠𝑃 − 𝑠𝐻| > 0; (4) non-handler
avoiding, if 𝑠𝑁 < −0.5; (5) handler avoiding, if 𝑠𝐻 < −0.5; and (6) mixed, for all

other combinations. We plotted the distribution of total distance moved across

equal intervals for each of these five strategies (or those present in the evolved

populations; see Fig. 6.3). We also plotted the movement paths of individuals

from the strategies for a visual comparison of path structure and distance moved.

Repeatability of AgentMovement

When animals are challenging to assay in captivity, researchers may attempt

to detect individual consistency in movement behaviour from animal tracking

data alone (see a review in Hertel et al. 2020: see for an example). In this ap-

proach, a population is understood to comprise of ‘repeatable’ individuals if the

between-individual variance in behaviour is a substantial proportion of the to-

tal variation that is not explained by the fixed effects of a linear mixed model

(LMMHertel et al. 2019). Individuals differing in behavioural mechanisms are

expected to make differingmovement decisions when presented with the same

environmental cues; the cumulative and emergent effects of these decisions are

thus expected to be reflected in the tracking data. Consequently, a population

with differences among individuals in movement decision-making mechanisms

(‘movement types’) should be expected to be ‘repeatable’ in movement behaviour.
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This approach relies on repeatedmeasures of an individual behaviour, such as

daily distance moved (Niemelä and Dingemanse 2018; Hertel et al. 2020). One

way of obtaining such repeatedmeasures is by summarising behaviour over equal

time-intervals of an animal’s track (see e.g. Hertel et al. 2019). We investigated

whether our agents’ fixed movement decision-making weights would result in

high population-wide repeatability in movement behaviour, and specifically, in

the mean distance moved.

We tried to determinewhether repeatability analysis coulddetect that therewas

wide functional variation in the movement decision-making rules of our evolved

agents. To implement this approach, we divided agent paths from the final gener-

ation of 10,000 timesteps into 10 consecutive intervals of equal duration (1,000

timesteps each; similar to weeks), and calculated the mean distance travelled

over 100 timestep-long segments (similar to days) in each interval. Following

Hertel et al. 2019, we calculated the between-individual variance using linear

mixedmodels (LMMs) of the form

mean distance ∼ ̄𝑟 + (1|identity) + (1|interval) (6.1)

where the mean cell productivity ̄𝑟 was taken as fixed effects to account for

differences in the environment experienced by each agent.

Knowing that our scenario 2 reliably results in a population with both fixed-

strategy foragers and kleptoparasites, we examined three ways of taking individ-

uals’ competition strategy into account when estimating repeatability. First, in

the basic model, we used the repeatability model specified above, in which we

ignored the differences in competition strategy among our agents. Second, in the

fixed effect model, we included the competition strategy of each agent (forager or

kleptoparasite) as a fixed effect in the model. Third, in the separate modelling

approach, we fit the basic model to the data from foragers and kleptoparasites

separately.

Across model formulations, We scaled the movement distance and the pre-

dictor variables between 0 and 1, for each interval of each simulation run. We

set individual identity and the time interval to be random intercepts, following

(Hertel et al. 2020). We fit separate GLMMs for each simulation run, and used the

rptr package in R (Nakagawa and Schielzeth 2010) to estimate the repeatability

of total distance in our agent population (bootstraps = 100; permutations = 10).

Individual Differences inHabitat Selection

Finally, we investigated whether individual differences in movement rules

would translate to differences in habitat selection, using a step-selection function

framework. Step-selection analysis essentially aims to determine why animals
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movewhere they do, given the alternative steps they could havemade, by relating

the animal’s choice of step to differences in environmental conditions among the

alternatives (Thurfjell et al. 2014; Avgar et al. 2016; Signer et al. 2019; Fieberg

et al. 2021). When an SSF is fit to each individual’s tracking data, the estimated

coefficients of a step-selection function (SSF) are analogous to the agent move-

ment decision-making weights in ourmodel (see previous interpretation inWhite

et al. 2018b). In empirical studies, it is difficult to measure the availability of fine-

scale environmental cues, such as the abundance of depleteable resources, or the

densities of conspecifics. One common solution to this challenge is to compare

selected and alternative steps on the basis of a slowly-changing environmental

measure such as productivity (e.g. NDVI, analogous to 𝑟Pettorelli et al. 2011), that
is broadly correlatedwith other phenomena. When correctly chosen, productivity

has a mechanistic relationship with other environmental cues: cells with higher

𝑟 should be expected to havemore prey items by definition, and to attract more

competitors, following expectations from Ideal Free Distribution theory (Fretwell

and Lucas 1970; Parker 1978). Though animals likely cannot sense landscape

productivity directly (and our agents cannot sense 𝑟), analysing step-selection
in relation to productivity is still a common practice, and could help reveal rela-

tive differences among individuals’ selection for habitats, potentially indicating

variation in the underlying behavioural mechanisms.

We prepared the data for SSF fitting by reducing data volumes to make com-

putation faster: we thinned agent tracks to select only every 10th position, and

selected 8 alternative positions for each ‘true’ step. We customised the method of

selecting alternative steps from the default implementation in amt (Signer et al.

2019): while accounting for thewrapped landscape, we selected eight cells within

a distance of 10 units from the agent position, since these are only locations to

which an agent could voluntarily move in 10 timesteps. We excluded the true

step end-point from among the alternatives, and considered remaining in place

to be a valid option. The resulting dataset consisted of the true and alternative

step coordinates for each step, to which we linked the the cell-specific 𝑟. We fit

a step-selection function for each individual separately in each simulation run,

relating whether a step was taken or not (the 𝑐𝑎𝑠𝑒, in amt parlance) to the value

of 𝑟. We used an SSF of the form:

case ∼ 𝑟 + strata(step identity) (6.2)

We visually investigated whether differences in selection strength for 𝑟 were
revealed for populations with substantial polymorphisms in movement weights.

During earlier analyses, we had found that agents in the exploitation competition

scenario could be classified into three ‘movement types’, based on which weight

(sP, sN, sH) had the largest absolute value. We expected that agents whose largest
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weightwas 𝑠𝑃, the preference for prey-items, would have larger selection strengths

for cell 𝑟.

Results

Model Eco-Evolutionary Equilibrium

Both scenarios of our model — as expected from previous analysis — reached

an evolutionary equilibrium: a stabilisation of mean per-capita intake within 50

generations (index 𝑟𝑚𝑎𝑥 = 0.01). The two scenarios differed strongly in terms of

the evolution of movement decision-making weights, again, as we already knew

from earlier investigation in Chapter 4. Briefly, in scenario 1, populations across

replicates rapidly and consistently evolved to prefer moving to cells with prey-

items (positive values of 𝑠𝑃) and cells with handlers (positive values of 𝑠𝐻) within
100 generations (Fig. 6.1A1). Populations also evolved to avoid non-handlers

(negative values of 𝑠𝑁; Fig. 6.1A1). All replicates showed substantial variation in

themovement decision-making weights (Fig. 6.1A1). In scenario 2, we found

an eco-evolutionary equilibriumwith stable proportions of the two competition

strategies. As might be expected then, the evolution of populations’ decision-

makingweights was quite different from that of scenario 1. Agents had an evolved

preference formoving to cells with prey-items, and an avoidance of cells with non-

handlers (Fig. 6.1A2). However, there was a strong dimorphism in the response

to handlers, with most agents showing a strong preference for handlers, but with

a sizeable minority of agents showing an avoidance of handlers (Fig. 6.1A2).

The differences in evolvedmovement rules also translated to functional varia-

tion in relative preferences for the three environmental cues. In scenario 1, most

agents had a strong preference for prey-items, with a number of agents neutral to

the other two cues (large values of 𝑠𝑃, see Fig. 6.1B1). Nonetheless, many scenario

1 agents’ movement rules also incorporated social information in the form of the

presence of competitors, and these agents either avoided non-handlers (large

negative values of 𝑠𝑁), or preferred to move towards handlers (positive values of

𝑠𝐻). In scenario 2, the two competition strategies differed dramatically in their

relative preferences for movement cues. Overall, most agents relied entirely on

social information— the presence and foraging status of competitors — and on

the abundance of prey-items almost not at all, when making movement deci-

sions (Fig. 6.1B2). Foragers sought to avoid all agents, with negative values for 𝑠𝐻
and 𝑠𝐻, but differed strongly inwhich, of handlers and non-handlers, were most

avoided. Kleptoparasites, on the other hand, were almost exclusively handler-

preferring, with strong positive values of 𝑠𝑃. A small number of both foragers

and kleptoparasites followed the movement rules of the opposite strategy; these
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likely represented a strategy mutation during reproduction, rather than a viable

combination of movement and competition strategies.

Our classification of agents based on evolved relative preferences formovement

cues revealed that most agents in scenario 1 were either prey-tracking, prey and

handler tracking, non-handler avoiding, or used amixed strategy (Fig. 6.2A1). On

the other hand, agents in scenario 2had amovement type strongly correlatedwith

their competition strategy: most foragers were either handler- or non-handler-

avoiding, while kleptoparasites were all handler-tracking (Fig. 6.2A2). We found

that movement distance was strongly linked to competition strategy, and did not

correlate with movement type, as foragers in both scenarios 1 and 2 had very

similar movement distances, regardless of their movement type (Fig. 6.2B1, B2).

Kleptoparasites, however, moved nearly twice as much as foragers in scenario 2

(Fig. 6.2B2).

Movement Cues, Competition Strategies, andRepeatability ofMovement Distance

Our simulation’s populations, at the eco-evolutionary equilibrium (G = 250)

were comprised of individuals with a broad range of movement strategies (Fig.

6.3A). In scenario1, awider range ofmovement strategieswere evolved onhigher

productivity landscapes (𝑟𝑚𝑎𝑥 ∈ 0.02, 0.03), than on lower productivity landscapes
(𝑟𝑚𝑎𝑥 = 0.01); the pure handler-tracking and handler avoiding strategies were seen

only at at higher growth rates (Fig. 6.3A1). This suggests that on higher pro-

ductivity landscapes, a wider range of movement types have equivalent fitness.

The mechanism enabling this is the increased abundance of prey-items: as more

agents find prey more easily and become handlers, the relative strength and fre-

quency of the handler cue increases, and navigating using this social information

alone becomes a viable movement strategy.

The repeatability of movement distance is nearly five times as high onmore

productive landscapes (𝑟𝑚𝑎𝑥 ∈ 0.02, 0.03; repeatability ≈ 0.70), as on low pro-

ductivity landscapes (𝑟𝑚𝑎𝑥 = 0.01; repeatability ≈ 0.15; Fig. 6.3B1). This large

difference may be because there are more movement types on high-productivity

landscapes (Fig. 6.3A1), with subtle differences in distance moved among them.

Yet, another plausible explanation is that on high productivity landscapes, there

are simply more movement cues, in the form of prey-items and handlers. Since

the movement types differ in how they process and respond to cues, movement

on landscapes with more cues might better reveal subtle differences among the

behavioural types.

In scenario 2, increasing productivity also allows a wider range of forager, but

not kleptoparasite, movement strategies (Fig. 6.3A2). At the index 𝑟𝑚𝑎𝑥 of 0.01,

foragers are mostly agent avoiding, while kleptoparasites are handler tracking.
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Figure 6.1: Evolutionary equilibrium and functional variation inmovement rules in a
spatially explicit, individual-basedmodel of animalmovement. We find substantial poly-
morphism inmovement rules in both scenarios of our spatially explicit, individual-basedmodel of
the joint evolution of animal movement and competition strategies. Agents in both (A1) scenario
1 (exploitation competition only), and in (A2) scenario 2 (fixed, individual competition strategies),
evolve multiple, distinct, co-existing values of each of the weights controlling movement rules
in the forms of preferences for each cue: 𝑠𝑃 (prey-items), 𝑠𝐻 (agents handling prey, ‘handlers’),
and 𝑠𝑁 (idle agents, ‘non-handlers’). The morphs persist across generations, indicating that they
likely have equivalent foraging success, and hence, fitness outcomes. (B1) In the exploitation
competition scenario, the evolved population (at G = 250; blue line in panels A1 and A2) has
wide individual variation in their relative preferences for environmental cues (the scaled weights
𝑠𝑃, 𝑠𝐻, 𝑠𝑁). Most agents trade a preference for prey-items against either an avoidance of non-
handlers (orange points), or a preference for handlers (yellow points with 𝑠𝐻 > 0.5). (B2) In the
fixed-strategy scenario 2, agents of the two competition strategies (foragers and kleptoparasites)
have very different relative preferences for environmental cues. While foragers largely either
avoid handlers (yellow points, 𝑠𝐻 < −0.5), or avoid non-handlers (red points), most kleptoparasites
prefer moving towards handlers, their direct resource. A small number of both foragers and klep-
toparasites follow the movement rules of the opposite strategy; these likely represent a strategy
mutation during reproduction. All panels show simulation runs with 𝑟𝑚𝑎𝑥 = 0.01, and show a
single replicate for clarity.

However,with increasinggrowth rates, the frequencyof kleptoparasitesdecreases,

until, at 𝑟𝑚𝑎𝑥 = 0.03, kleptoparasites are extinct in nearly all simulation replicates.
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Figure 6.2: Movement types and competition strategies, and differences inmovement
paths. We classified agents in both scenario 1 (A1) and scenario 2 (A2) into intuitive ‘movement
types’, based on their relative preferences for environmental cues (see Fig. 1 and Main Text).
We plotted them based on their weights for prey-items and handlers, adding a transparency to
show the frequencies of the types. By this simple classification, agents in scenario 1 (A1)mostly
track prey-items, or both prey-items and handlers, while avoiding non-handlers. Agents in the
‘mixed’ strategymostly track prey-items and avoid non-handlers. In scenario 2 (A2), most foragers
avoid other agents, either handlers or non-handlers; meanwhile, kleptoparasites, as expected,
track their primary resource, handlers. Regardless of their movement type, agents in (B1) the
exploitation scenario all move roughly the same distance in each interval. (B2) However, in
the kleptoparasitism scenario, the competition strategies differ strongly, with kleptoparasites
moving nearly twice as much as foragers. Despite moving according to quite different rules (avoid
handlers, or avoid non-handlers), both types of foragersmove nearly the same distance on average.
While kleptoparasites’ greater movement should be expected to lead to less time for handling
prey, and hence lower intake, they save on this time by taking advantage of pre-handled items
stolen from foragers. Panels A1 and A2 show 5,000 individuals from a single replicate of each
scenario, while panels B1 and B2 show themeanmovement distance of 100 agents over segments
of 100 timesteps from all 10 replicates.

Thus, on high productivity landscapes, the scenario 2 population is functionally

identical to the scenario 1 population, and all individuals follow a forager strategy.

Repeatability analyses on the movement distances of scenario 2 populations is

sensitive to how the differences in competition strategy are treated, but not to
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landscape productivity (Fig. 6.3B2). Specifically, (1)When repeatability analysis

ignores differences in competition strategy, our populations, comprised largely of

handler and non-handler avoiding foragers, and handler tracking kleptoparasites,

had repeatability scores > 0.8 (Fig. 6.3B2a). This would suggest that nearly all

the variance in movement distance not explained by the fixed effect of environ-

mental productivity is due to between-individual differences (which we know to

be primarily differences in competition strategy).

(2)When competition strategy is included as a fixed effect in repeatability analy-

sis, repeatability scores drop substantially to < 0.5 (Fig. 6.3B2b). This suggests

that while competition strategies are important in explaining differences inmove-

ment distance, a substantial chunk of the unexplained variance is comprised of

between-individual variance.

(3) Finally, in another plausible way of treating data when the existence of compe-

tition strategies is known, running separate repeatability analyses for foragers and

kleptoparasites reveals very different repeatability scores for the two strategies

(Fig. 6.3B2c). While foragers have repeatabilities betwen 0.0 and 0.75, depending

on the growth rate, kleptoparasites have repeatabilities close to zero.

There did not appear to be an effect of landscape productivity as in scenario

1. This may be because, in scenario 2, the presence of kleptoparasites (indeed,

as the majority strategy) reduces prey-item extraction from the resource land-

scape. Consequently, all scenario 2 landscapes eventually resemble scenario 1

landscapes at 𝑟𝑚𝑎𝑥 = 0.03. We ran analyses only on growth rates of 0.01 and 0.02,

as kleptoparasites rapidly go extinct early on in simulations with a growth rate of

0.03 (see Chapter 4 for an explanation of the evolutionary dynamics).

Individual Differences inHabitat Selection

We fit 6,000 step-selection functions to thinnedmovement data from 60 simu-

lation runs, with 10 replicates for each 𝑟𝑚𝑎𝑥 value (0.01, 0.02, 0.03) and scenario

(1 and 2). In scenario 1, all agents forage and have a substantial preference for

moving towards prey-items. Consequently, the estimated coefficients of their ap-

parent selection for cell productivity 𝑟 are all positive, with no differences among

the movement strategies (Fig. 6.4A1, B1). On the other hand, in scenario 2,

the dramatic difference in competition strategies is reflected in the estimated

coefficients of apparent selection for cell 𝑟; foragers have substantially lower (and
even negative) selection for 𝑟 than kleptoparasites (Fig. 6.4A2). However, there

is little difference between foragers movingmostly to avoid handlers or to avoid

non-handlers (Fig. 6.4B2). As landscape productivity increases, scenario 2 pop-

ulations, but not scenario 1 agents, show a shift in their selection for cell 𝑟. At
higher growth rates (𝑟 = 0.02), scenario 2 populations — still comprised of about

equal proportions of foragers and kelptoparasites (see Fig. 6.3) — show substan-
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Figure6.3:Frequencyofmovementtypes,competitionstrategies,andenvironmentalcues,
andconsequences for repeatabilityanalyses todetect individualdifferences inmovement.
Increasing landscape productivity (𝑟𝑚𝑎𝑥) beyond the index value of 0.01 leads to more prey-items
on the landscape, and hence more available cues for movement decisions. In (A1) scenario 1, this
leads to a change in the frequencies of movement types, with the persistence of handler-avoiding
and pure handler-tracking types. In (A2) scenario 2, the frequencies of both movement types
and competition types change with the increased availability of prey-items: at higher 𝑟𝑚𝑎𝑥 (0.03),
foragers are bothmore common, andusemoremovement strategies, than at lower 𝑟𝑚𝑎𝑥 (0.01). The
repeatability ofmovement distance is greater for scenario 1 populations on landscapeswithhigher
𝑟𝑚𝑎𝑥, and hence more available movement cues (B1). This suggests that individual differences in
movement decision-making mechanisms may be more readily detected when agents are actually
able to process environmental cues using those mechanisms, rather than when agents move
on relatively ‘clueless landscapes’. When agents’ competitive strategy strongly influences their
movement, as in scenario 2 (B2 panels), repeatability analyses are strongly affected by how this
difference is treated. (B2a) If differences in competitive strategies are not included in the model
formulation, repeatability scores are consistently high (> 0.9). (B2b)When agents’ competitive
strategy is included as a fixed effect, repeatability scores are substantially lower (< 0.5). Finally,
(B2c), repeatability models run separately for each of the competitive strategies would essentially
reveal that competitive types with strong dimorphism (or clustering) in movement types (here,
foragers) have a higher repeatability than competitive types with a monomorphic movement
strategy (here, kleptoparasites). Panels A1 and A2 show frequencies pooled over 100 agents from
10 replicate simulations, with agent data exported at G = 200, 210, …249. Panels B1 and B2 used
long-termmovement paths from 100 agents in generation 250, over 10 replicates. B2 omits 𝑟𝑚𝑎𝑥
= 0.03, as kleptoparasites are often extinct.

tially more overlap between the two strategies’ selection for 𝑟 (Fig. 6.4A2). This is
carried over as an overlap between the three mainmovement types (Fig. 6.4B2).

At the highest growth rates, scenario 1 and scenario 2 populations are essentially

identical, and the few kleptoparasites remaining in scenario 2 apparently select

for 𝑟 similar to foragers. Overall, applying step-selection analysis to our model
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output suggests that differences between competition strategies, when associated

with different movement types, could be revealed under certain conditions from

animal movement paths.

Figure6.4:Movementtypesandcompetitionstrategiesrevealed instep-selectionanalyses.
Applying step-selection analysis to long-termmovement paths from (A1) scenario 1, and (A2)
scenario 2 reveals strong differences in apparent selection for landscape productivity between
competition strategies (𝑟𝑚𝑎𝑥 = 0.01). In (B1) scenario 1 and (B2) scenario 2, the apparent selection
strengths for productivity 𝑟 of foragers of different movement types overlaps. Handler-tracking
kleptoparasites in scenario 2, too, have apparent selection strengths for 𝑟 that overlap with those
of some foragers, but which are substantially higher than those of most foragers, which avoid
both handlers and non-handlers. These essentially opposing movement strategies are picked
up as differences in selection for 𝑟. Kleptoparasites track handlers, and the probability of a
forager finding prey and handling are higher at the centres of resource peaks, i.e, cells with high
𝑟. Conversely, foragers avoid other agents, and since high-productivity cells are more likely to
have agents, they apparently select against high productivity cells. All panels show selection
coefficients from 100 agents’ long-termmovement paths at G = 250, from 10 replicates of each
simulation; only coefficients with 𝑝 ≤ 0.05 are shown.
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Lessons for Data Analysis from the Performance of

StatisticalMethods on SimulatedData

Weused an evolutionary individual-basedmodel of animalmovement decision-

making under two scenarios of foraging competition (Kleptomove; as described

hereand inChapter4), to investigatewhatwecan learnabout individual-differences

by applying statistical analyses to animal movement data. Our evolved agent

populations showed substantial between-individual differences in their relative

preferences for environmental cues (‘movement types’; Getz et al. 2015): when

presentedwith the same cues, agents couldmake substantially different decisions

about where to move. We showed that despite very different relative differences

among the movement types for environmental cues, the types did not consis-

tently differ in their movement distance. However, in our scenario 2, in which

individuals had a fixed competition strategy (forager or kleptoparasite), kleptopar-

asites moved much more than foragers. With few between-type differences in

movement distance, the repeatability of movement distance was low in scenario

1 at low growth rates, but increased substantially at higher growth rates. In sce-

nario 2, not accounting for differences in competition strategy led to repeatability

scores ≈ 1.0, but correcting for these differences led to lower repeatability scores.

Finally, applying step-selection analysis to estimate agents’ apparent selection

for landscape productivity showed no differences among movement types in

scenario 1, but revealed clear differences between competition strategies (and

their correlated movement types) in scenario 2.

Variation AmongMovement Types and Competition Strategies

The co-existence of multiple movement types across multiple generations of

scenario 1 suggests that multiple alternative movement rules are equally good

for navigating our fluctuating resource and social landscapes (see also Getz et al.

2015; Netz et al. 2021b). That movement types travel roughly the same distances

is not surprising, as they must spend the same time handling, and gaining intake,

to have equivalent fitness. In scenario 2, there are essentially only two viable

movement types that are strongly correlated with competition strategies at low

growth rates (𝑟𝑚𝑎𝑥 = 0.01). Here, the handler-tracking kleptoparasites move more

because their primary resource, handlers, are scarce; conversely, foragers move

less, as prey-items are abundant. Yet both strategies have equivalent fitness

because kleptoparasites make up for lost time by having to handle stolen prey-

items for a shorter duration. We suggest that for movement types to differ in

their path metrics (e.g. distance, or speed; see Abrahms et al. 2017), between-

individual variation and within-individual consistency along a further axis of

behaviour that equalises fitness between the types is likely necessary.
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Repeatability Analysis

Repeatability analysis of the scenario 1 movement paths showed that popula-

tions evolved on higher productivity landscapes had significantly higher repeata-

bility scores. Themajor difference between lower (𝑟𝑚𝑎𝑥 = 0.01) and higher produc-

tivity landscapes (𝑟𝑚𝑎𝑥 =0.03) is that the latter havemanymore prey-itemsper cell.

While agents on low growth rate landscapes often encounter areas with few or no

movement cues (‘clueless regions’; Perkins 1992), this is muchmore rarely the

case on high productivity landscapes. Since our agents’ decision-makingmech-

anisms— in common with animal cognitive systems— require environmental

cues to make movement decisions, between-individual differences in movement

are more readily detected on landscapes withmoremovement cues (see Carter

et al. 2013b). Our result might suggest that populations with different movement

types transplanted between information-poor and information-rich landscapes

would showamarked increase in behavioural consistency. We caution against this

interpretation, as our populations have evolved, rather than simply been tested

on, landscapes across a productivity gradient. On high productivity landscapes,

a wider range of movement types is evolved, highlighting howmeasures such as

repeatability are linked to the evolutionary trajectory of populations.

Using scenario 2, we illustrated three different ways of implementing repeata-

bility analysis for a population with correlated differences in movement type and

competition strategy. When differences in competition strategy were ignored,

repeatability scores were close to 1.0, as the variance in movement distance

due to competition strategy was picked up as between-individual variance in-

stead. Adding competition strategy as a fixed effect to the analysis resulted in

lower repeatability values; this was expected, as differences among competition

strategies explain the bulk of the variance. Finally, performing separate repeata-

bility analyses for foragers and kleptoparasites yielded very low repeatability

scores for kleptoparasites, which foragers were still quite repeatable. This last

result is potentially because kleptoparasites are solidly monomorphic in their

movement type, while foragers may be either handler- or non-handler-avoiding,

and this difference in decision-makingmechanism could result in subtle differ-

ences inmovementmetrics. Overall, we suggest that extremely high repeatability

scores might indicate that an important source of variation is not being taken

into account, and should be sought for. Multivariate methods can help identify

within-individual behavioural co-variation in movement metrics, such as dis-

tance and displacement (Hertel et al. 2019; 2021). This approach could help

reveal strong associations betweenmovement types and competition strategies,

as in ourmodel, or responsiveness to social cues (Strandburg-Peshkin et al. 2015).

Identifying such behaviours from animal movement data is likely to require very
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high-resolution tracking and associated computational methods (Nathan et al. in

prep.).

Individual Differences inHabitat Selection

In a novel application of step-selection analysis to the study of individual dif-

ferences, we showed that agents of different competition strategies (scenario 2),

but not of different movement types (both scenarios 1 and 2), had diverging se-

lection for environmental conditions. An important reminder is that our model’s

agents cannot actually detect cell productivity 𝑟, and therefore the preference
for 𝑟 values is more correctly termed apparent selection. This situation parallels

empirical analysis of animal tracking data, in which researchers commonly use

long-term indices of environmental conditions (e.g. NDVI; Pettorelli et al. 2011)

to approximate the ephemeral movement cues actually encountered and acted

upon by individuals. Nonetheless, strong between-individual differences (here,

in competition strategy) are likely to be reflected in animals’ apparent selection

for environmental conditions. In our model, the difference in apparent selection

arises from the distribution of movement cues relative to cell growth 𝑟. Handler-
tracking kleptoparasites have a higher selection for 𝑟 because high-𝑟 cells are
more likely to have handlers, since foragers are more likely to find prey-items

there and begin handling. On the other hand, agent-avoiding foragers have a

lower selection for 𝑟 as they avoid resource peaks, which are more likely to have

more agents. Some foragers will always be found on high-𝑟 cells, as even a forager
moving across the landscape at random (which they do not) is more likely to stop

and begin handling on a high-𝑟 cell than a cell at the periphery of a resource peak.

Individual-basedModels as a Check on StatisticalMethods

Individual-basedmodels are not new inmovement ecology, and are increas-

ingly used and prescribed to better understand animal movement (see a review

in DeAngelis and Diaz 2019). Suchmodels have been used to illustrate the impor-

tance of animal movement to phenomena such as disease outbreaks (White et al.

2018b), and sympatric speciation (Getz et al. 2015), while also showing how indi-

vidual differences in animal movement strategies can have downstream effects

on population-level phenomena such as habitat-selection and social interactions

(Spiegel and Crofoot 2016; Spiegel et al. 2017). There is also a rich tradition

of individual-based models being used to assess the performance of methods

intended for use on empirical tracking data. For example, Gurarie et al. 2016,

Michelot et al. 2016, and Patin et al. 2020 simulated the paths of individuals with

different behaviouralmodes to test the performance of tools to detect behavioural

change-points, where the animal switches from onemovement mode to another.
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However, very few individual-basedmodels that are used as checks on statisti-

cal methods actually model the fine-scale decisions— comprising comparisons

among, and eventual selection of — steps that comprise animal movement (but

see recently Vissat et al. 2021). This is at least partially because few statistical

methods seek to estimate animal movement preferences, and by implication,

animal cognitive processes, at such fine scales. Step-selection analysis has the

potential to be among these methods, as it directly links what animals actually

perceive, to where they go (see recently Aben et al. 2021). This allows a fine-scale

comparison between selected and alternative steps, which, at certain scales, may

functionally approximate individuals’ cognitive processes, at least in terms of

preference or avoidance.

Our model and other mechanistic individual-basedmodels that follow similar

principles (Getz et al. 2015; 2016; Netz et al. 2021b), allow for the implementation

of differentmovement decision-makingmechanisms at very fine scales, in biolog-

ically plausible ways. Our agents’ movement decisions integrate locally available

cues to make adaptive movement decisions, just as real animals are expected to

do (Nathan et al. 2008). While our agent responses are linear, they can in principle

be much more complex, including convoluted relationships between the envi-

ronmental cues, as well as separate weights for each cue combination. Coupled

with the ability to know the state of the environment, and of each agent, at any

point in the simulation, we believe this and other similar models are suitable for

the testing of a range of empirical methods. For example, a better test of whether

step-selection analysis can determine agent preferences for environmental cues,

and individual differences therein, could involve the dynamic logging of selected

and alternative steps, as well as the environmental covariates (prey-items and

competitors) at those steps, in order to compare between them at fine scales. Such

logging would immediately reveal that often, agents have either very few direct

local cues, or very few differences between conditions at alternative and selected

steps, on which to base movement decisions at fine timescales relatively clueless

regions, per Perkins 1992. This highlights a potential challenge to such analy-

ses from the ever increasing resolution of animal tracking and environmental

monitoring data; for example, how should step-selection analysis be adapted to

account for high spatial- and temporal-autocorrelation in animals’ environments,

while still taking advantage of high sampling frequencies.

Conclusion

The analysis of our model’s agent movement paths using contemporary sta-

tistical tools frommovement ecology showed that it is often challenging to infer

animals’ decision-making processes, or even relative differences among individu-
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als, from tracking data alone. First, when seeking to assess individual consistency

and between-individual differences from animal tracking data, it is key to include

predictors that have a mechanistic relationship with the behavioural response

being studied. For species that are only poorly known, or difficult to study in

captivity, this requires first collecting substantial knowledge on natural history

and behavioural biology. Researchers could potentially apply a model selection

approach (Burnham et al. 2011), to determine which fixed effects are best suited

to their study species. Second, uncovering individual behavioural tendencies in

captivity may not be sufficient to describe animal movement in natural environ-

ments, which is likely to be affected by fine-scale fluctuations in resources, as

well as the social environment. Finally, attempting to recover animals’ movement

preferences at fine scales is a challenging task. In part, this is due to a mismatch

of scales: empirical researchers are rarely able to study fine-scale movement

decisions, because suitably fine-scale data on the environmental cues that go

into these decisions are not available. While increasingly high-resolution animal

tracking is becomingmore common, therewould need to be a concurrent increase

in the resolution of environmental monitoring from the animal’s point of view.

The availability of such data sources would make the development of statistical

tools that account for particular issues— such as spatio-temporal autocorrelation

— a priority in movement ecology. Individual-based models, in which simple

mechanisms can give rise to substantial complexity in animal movement and

population distributions, could be very useful as test-beds to investigate whether

current and upcoming tools are truly capable of parsing patterns to recover the

underlying processes.

-.-





Chapter7
ABriefReflectionon this

Thesis

PratikR. Gupte

Not all those who wander are lost.

– from the works of J. R. R. Tolkien

T
HIS thesis, as the abstract promises, is relatively episodic, and the various

chapters are only loosely tied together inasmuch as they discuss different

aspects of animal behaviour. Nonetheless, I hope to have put forward a cogent

view of one approach to studying animalmovement— this approach is essentially

to take as mechanistic a perspective as possible. Here, I reflect upon the findings

andmethods in this thesis.

Reflections on Part I

Part I of this thesis took an empirical approach to animal movements and

space-use. Animal movement ecology has benefited greatly from the adoption of

advancedanimal tracking technology, andespecially fromtheproliferationofGPS

loggers (Cagnacci et al. 2010). Yet the majority of species of birds andmammals

(leave alone reptiles or amphibians) cannot currently be tracked because most

high-resolution loggers are much too heavy for them to bear safely (Kays et al.

2015). High-throughput tracking systems—whichNathan et al. (2022) described

— such as ATLAS with its lightweight tags, can allow researchers to achieve at

regional scales a far more detailed understanding of animal movement than
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sought byWikelski et al. (2007) when floating the idea of ICARUS (see now Jetz

et al. 2022). Yet data from these systems is not as conservatively ‘cleaned’ as

that from GPS tracking, and this is because the original end uses of each of these

systems are very different.

In Chapter 2, I showed how a set of simple techniques and workflows can be

used to substantially improve the quality of raw ATLAS data. Beardsworth et al.

(In press) have now shown that the accuracy of ATLAS systems (in this case, the

Wadden Sea ATLAS system; Bijleveld et al. 2021) — after applyingmy cleaning

methods — is comparable to GPS tracking, but with a much higher sampling rate.

An interconnected network of such high-throughput systems could represent

one option for how animals could be tracked at high spatio-temporal resolution

at large, continental scales (Nathan et al. 2022). The methods that I set out

in Chapter 2 were borrowed from a range of fields that have already made the

transition to being ‘big data’ disciplines; among them, remote sensing of the earth,

andmolecular biology and biochemistry (Peng 2011; Gorelick et al. 2017). It is

entirely unclear whether, and to mymind actually unlikely, that the full extent

of these recommendations (version control, open science, well tested pipelines)

will be adapted by the majority of researchers. This is simply because the correct

incentive structures to promote their adoption are currently quite weak.

In Chapter 3, I used data from the original ATLAS system deployed in the Hula

Valley in Israel, to study how moult — the loss and regrowth of flight feathers

— affects bird movement and habitat selection. This project demonstrates how

data frommore developmental versions of high-throughput systems can bemade

usableby robustfilteringandcleaning. I found thatbirds, regardless of theirmoult

status, strongly avoid open areas which they presumably perceive as having a

higher risk of predation. This finding is interestingly in contrast with an example

presented in the Introduction: small southern African herbivores actually prefer

open areas when seeking to avoid predation, as unlike with birds, it ismammalian

predators rather than prey that use cover to ambush their prey (Le Roux et al.

2018). This highlights the challenges in generalising even broad findings about

movement across taxa. Within birds, however, my results are in line with recent

findings that flight characteristics affect whether bird species will risk crossing

even narrow open tracts, such as forest roads (Claramunt et al. 2022).

The results here suggest that predation risk avoidance could be a possible

mechanism by which some areas that appear productive become unsuitable for

many bird species—agricultural fields for instance provide little cover fromaerial

predators. Birds have long been anecdotally known to avoid certain features

such as water bodies despite being powerful flyers, to the extent that this has

prevented entire groups from colonising archipelagos in the absence of land

bridges (Diamond 1981). This effect is nowmuch better quantified by studying
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the migration of raptors across open water (Nourani et al. 2020). Both road- and

water-crossing avoidance seem bizarre to human observers, possibly because

as a terrestrial species, we subconsciously think of flight as a certain kind of

invulnerability, whether fromenvironmental hazards or active hunters. It ismuch

more likely that we simply do not — and perhaps cannot — really appreciate how

complex flight is, and the many risks it holds. One of the main conclusions of

Chapter 3 (and of Part II), then, is the importance of adopting the perspective of

the study species, the individual in its context, when seeking to understand the

short- and long-term drivers of animals’ behaviour.

Reflections on Part II

In Chapter 4, I showed how animal movement and competition strategies

jointly evolve, using an individual-based model with 10,000 individuals moving

about on a grid of over 250,000 cells — among the largest IBMs in this field of

study. The model demonstrated a number of interesting outcomes that could

form the basis for future work. For instance, I showed that individual variation in

preferences for environmental cues reliably evolves in simple foraging contexts,

without apparent trade-offs in foraging strategies, and that social information is

key tomoving and foraging in consumerpopulations. When individuals can adopt

a kleptoparasitic strategy, theymay do so evenwhen environmental cues indicate

that a ‘producer’ strategy (Beauchamp2008)might bemore suitable. In this sense,

certain competition and foraging strategies may actually represent ‘personalities’

as they were originally conceived of— suboptimal choices despite countervailing

information (Sih et al. 2004a). Unlike other chapters in this thesis, I cannot

be sure that this one will lead to substantial developments in eco-evolutionary

theory, and see it more as a culmination of theory in the once-key field of foraging

competition studies.

Chapter 6 is a direct development of of Chapter 4, even though it is presented

later. Here, I adapted movement paths generated in Chapter 4 to investigate

popular statistical tools in movement ecology: repeatability analysis, and step-

selection analysis. Inferring processes (mechanisms) from observed patterns

(phenomena) is a common pursuit in movement ecology. My analysis shows

that there are substantial risks to doing so naively — spatial personalities (Stuber

et al. 2022) may actually result from underlying differences in movement and

competition strategies. This highlights the importance of a detailed natural

history understanding of the study species and its ecological context.

Finally, inChapter5, I tackleda scenario that is expected tobecome increasingly

common — the transmission of novel pathogens from one species to another

(Carlsonet al. 2022a). Indeedcurrently thehithertopoorly known tropicalAfrican
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disease monkeypox is currently breaking out in multiple countries where it is

not usually found, with the key risk that it could become endemic in rodent and

other animals in those regions. Additionally, SARS-CoV-2 has seen multiple

introductions to animals, including abundant wildlife such as deer in the United

States (Kuchipudi et al. 2022), and the H5N1 strain of avian influenza has been

spreading throughmultiple temperate species, primarily of shore- and seabirds

(Wille and Barr 2022). My relatively simple model of the trade-off between social

information use (in a foraging context), and the risk of pathogen transmission

generated clear predictions for how such novel pathogen introductions should

affect the evolution of host sociality. Worryingly, a cascading effect of decreased

host sociality in most scenarios could be poorer ecological performance in terms

of harvesting resources from the landscape, leaving populations vulnerable to

other environmental risks.

Thepotential consequences for an ecological community other than the species

directly affected by pathogens are borne out by Monk et al. (2022), who studied

the effects of the introduction of mange to vicuñas in Patagonia. The scenarios I

modelled may actually be too mild, and novel pathogen spillovers could extermi-

nate their hosts, rather than force the evolution of less gregarious social systems.

The scale of futurework required in this field is daunting: identifying outbreaks as

they happen, often in remote areas and involving poorly known species; determin-

ing patterns of species’ spatial overlap that could aid cross-species transmission

beyond the initial spillover; determining which species — for a range of reasons

— may be at heightened risk from an epi- or panzootic outbreak; and finally,

determining a response that preserves species while minimising risk of further

spillover.

TheRole ofModels in Understanding the Evolution of

Movement

The issue of how to use individual-based models to understand the (evolution

of) mechanisms underlying empirical data from animal tracking studies is not

new. One approach has been to use IBMs to generate ecological patterns (‘pattern-

oriented modelling’; Grimm et al. 2005), with quasi-evolutionary processes used

to fine tune the IBM parameters (Hamblin 2013). In Nathan et al. (2022), a recent

review of approaches to modern animal tracking data, we wrote,

Using genetic algorithms, initial candidate rulesets for individual

decision-making can evolve into a robust ruleset that is able to repro-

duce the unique range and quality of spatial and temporal patterns

in high-throughput data (“reinforcement learning’) [emphasis mine].
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This approach seeks to recover patterns seen in real empirical data from sim-

ulations, with the hope that the simulated mechanisms (‘candidate rulesets’)

that produced them are similar to those animating real individuals (‘true mecha-

nisms’) — this is the essence of ‘pattern-oriented modelling’ (Grimm et al. 2005).

However, a wide range of behavioural mechanisms can produce very similar

ecological phenomena, making it difficult to determine whether the ‘true’ mecha-

nism is approximated by any of the candidate simulatedmechanisms. Essentially,

it is challenging to determine processes from patterns (as I have alluded to in

Chapter 6).

Open questions also remain about how rulesets, or mechanisms, should be

encoded inmodels. Habitat selection rules which are complex functions of the

information available to individuals are likely to be challenging to interpret. For

example, movement decisions based on outputs computed by artificial neural

networkswere first proposed over a decade ago (Mueller et al. 2011), but they have

not seenwidespread adoption in the ecology and evolution literature (but seeNetz

et al. 2021b). One approach to interpreting the strategies encoded by complex

functions is to use sophisticated clustering algorithms to detect distinct combina-

tions of function coefficients (weights in a neural network) (Bastille-Rousseau and

Wittemyer 2019). The potential stumbling block here is that themethods required

for such clustering are also not native to ecology and evolution, and themselves

suffer from being much too complex to interpret for a general biologist audience

(see e.g. the GigaSOMmethod for clustering single-cell cytometry data; where

SOM is a ‘self organised map’, a form of machine learning Kratochvíl et al. 2020).

Furthermore, it is also unclear how these mechanisms should undergo evolu-

tion— in Nathan et al. (2022), we suggested using both genetic algorithms and

reinforcement learning acting on the simulated mechanisms, based on the simi-

larity of simulatedmovement paths with real animal movements. The concept

of genetic algorithms and reinforcement learning is borrowed from the fields of

artificial intelligence and computer science, and represents their idea of biolog-

ical processes (evolution and learning, respectively DeAngelis and Diaz 2019).

However, these approaches are explicitly designed with a specific goal in mind,

and the success of agents employing these algorithms can be— and is — usually

measured using single, simple metrics (e.g. classification accuracy, task com-

pletion time). This solution-oriented approach of artificial intelligence is poorly

suited to ecology and evolution, in which there are no single correct solutions

— and in which, moreover, individuals interact not only with the environment,

but also with each other, making ‘optimal’ solutions heavily dependent on local

ecological contexts. Consequently, I believe that neither the implementation of

genetic algorithms such as ‘simulated annealing’ (Getz et al. 2015), nor the use of

reinforcement learning is a good choice for conceptual eco-evolutionary models.
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Throughout the latter part of this thesis, I haveproposedadifferentway forward:

rather than working backwards from empirical phenomena to potential mecha-

nisms, to instead work forwards from plausible mechanisms to potential emergent

outcomes. This first requires a change in perspective on individual-based models,

from being highly detailed simulations of specific empirical systems (such as in

Stillman and Goss�Custard 2010; Bocedi et al. 2014; Diaz et al. 2021), to being

used to obtain broad conceptual insight into ‘What if …?’ scenarios. Such concep-

tual implementations, in addition to being demonstrated below, are also included

in Chapters 4 and 5. Second, I suggest beginning with plausible, well-supported

movement mechanisms, such as individual perception and integration of local

cues when making movement decisions (Nathan et al. 2008). Having selected

salient mechanisms, a plausible ecological context is also key — a population

foraging on a landscape is a solid starting point. Themain feature of thesemodels,

however, is to let the ecological outcomes for individuals in one generation (such

as intake) determine the mixture of movement decision-makingmechanisms in

the next generation, through inheritance (with variation arising viamutations;

see below, or Chapters 4, 5). For simplicity, as seen in the example models here,

and in Chapters 4 and 5, some ecological and evolutionary aspects will have to be

set aside. In addition to an initial understanding of howmechanisms can lead to

unexpected emergent outcomes, the class of models I advocate are well suited to

examining how these emergent outcomes could change following perturbations

in environmental regimes, as I do in Chapter 5 (see also Botero et al. 2015).

Estimating the Fitness Consequences ofMovement

Strategies fromTrackingData

A key barrier to achieving a unified evolutionary ecology of animal movement

is understanding the evolutionary consequences of animal movement strategies;

in short, this requires estimating the ‘fitness’ outcomes of movement (fitness

itself being a challenging term). These consequences may be broken down into

two key components, survival, and fecundity; together these determine lifetime

fitness. Ecologists, taking a phenomenological approach, have been able to make

some headway in examining the evolutionary consequences of somemovements,

such as annual migrations. For example Sergio et al. (2022) recently showed

that compensation for drift in the north-south migration route, caused by lateral

east-west winds, improved with age in black kites (Milvusmigrans), but that this

was mainly due to poorly navigating individuals dying while young. While this

study highlights the importance of movement for evolutionary dynamics— in

this case, conferring a survival benefit to better navigators — the inferences are

often specific to particular taxa, and difficult to generalise. However, we currently
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possess somemethods that could be used to link the consequences of movement

across temporal scales.

At relatively short temporal scales of a few tracking seasons, one approach is

to study movement in the context of a common ‘currency’, energy. Combined

experimental-observational approaches, linking respirometrymeasures of resting

metabolic rate, doubly-labelled water measures for daily metabolic output, and

tri-axial accelerometry andmovement tracking, have paved the way for robust

estimates of daily energy expenditure in free living animals (Stothart et al. 2016).

Animals’ spatial settings can impose or alleviate metabolic costs, leading to the

broader approach of studying ‘energy landscapes’, i.e., environmental factors that

change the “cost of transport” (Shepard et al. 2013). Building off this work, we can

now estimate how the cost of navigating through landscapes can affect large-scale

patterns of animal space-use (e.g. Gallagher et al. 2017). Yet more recent work is

probing how animals’ fine-scale movement decisions can be linked directly to

the energetic costs of those decisions (Klappstein et al. 2022). Overall then, the

frameworks for measuring energetic loss in moving animals are well developed,

and this can be linked to reductions in both individual survival and fecundity.

The positive effects of movement are more challenging to measure. Energetic

gain, for instance, requires the detection of foraging bouts. Here too, the addition

of accelerometry data can be useful in detecting sudden bursts of activity, espe-

cially those associated with predation attempts (Williams et al. 2014; Bryce et al.

2017). However, it is still challenging to remotely and automatically determine

the energetic gain from a predation event. The task of measuring the calorific

value of forage is easier for herbivorous species, as vegetation cover and quality

can often be quantified from remote sensing platforms (Pettorelli et al. 2011).

The caveat here is that the spatial resolution of remotely sensed data is often low.

Movement itself cannot confer increased fecundity, but can indirectly facilitate

more or higher quality breeding attempts through increased sampling of breed-

ing opportunities (as in Kempenaers and Valcu 2017). Yet movement data can

be very useful in determining whether individuals have bred successfully, and

uncover the characteristics of good nesting sites (Picardi et al. 2020). Integrating

the analysis of tri-axial acceleration data, could help refine current methods for

detecting breeding or nesting outcomes, at least in some taxa (Schreven et al.

2021). At larger temporal scales, individuals’ preferences for energy landscapes

could be linked to their survival or reproductive success, for global comparisons

of the potential evolutionary consequences of movement strategies.
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Approaches to InvestigatingModel Predictions

My class of conceptual models aim to provide broad frameworks for the inter-

pretation of current and future patterns observed in animal tracking data. This

is especially important as animal movement ecology becomes a ‘big data’ field

through the use of high-throughput tracking (Nathan et al. 2022). As the resolu-

tion of tracking data improves, animals’ fine-scale decision-making rules could

be revealed, and our framework could help understand the evolutionary causes

of these rules— as well as how these rules could shift with environmental change.

In this regard, space-time substitutions could help: by studyingmovement strate-

gies in distinct population of the same or similar species along a moving gradient

of environmental conditions, researchers could understand the eco-evolutionary

impacts of global changes such as warmer temperature bands moving polewards,

or shifts in pathogen prevalence (Blois et al. 2013; Carlson et al. 2022a). These

could constitute simple initial tests of model predictions for the example sce-

narios I outline earlier. Such studies would require international collaborative

frameworks studying comparable animal populations; fortunately, multiple such

networks exist and are growing (Iverson et al. 2019; Davidson et al. 2020; Jetz

et al. 2022).

-.-
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B
EWEGING is een fundamenteel proces in de natuur en het ontrafelen van

de oorzaken en consequenties van bewegingspatronen is een belangrijke

doelstelling van de dierecologie. De posities van individuele dieren in een land-

schap bepalen wat ze kunnen waarnemen enmet welke andere dieren ze inter-

acties kunnen aangaan. De uitkomsten van deze waarnemingen en interacties

hebben invloed op beslissingen over waar ze vervolgens heengaan. Dergelijke

individuele beslissingen vormen de basis voor grootschalige ecologische verschi-

jnselen, zoals de verspreiding en de ecologische interacties van een soort. In de

afgelopen twintig jaar heeft het vakgebied bewegingsecologie, dankzij snelle on-

twikkelingen op het gebied van trackingtechnologie, fascinerende en nooit eerder

waargenomen relaties tussen de bewegingspatronen van dieren en ecologische

processen aangetoond.

Nog steeds is de bewegingsecologie een van de meest dynamische gebieden

in de biologie. Dit proefschrift is een episodisch, persoonlijk verslag van twee

ontwikkelingen, waarbij ik betrokken ben geweest: (i) de ontwikkeling van statis-

tische methoden om uit de enorme tracking datasets ecologisch betekenisvolle

inzichten te verkrijgen over de oorzaken en consequenties van bewegingspatro-

nen; en (ii) de ontwikkeling van simulatiemodellen om de evolutie van beweg-

ingsstrategieën beter te begrijpen. Beide ontwikkelingen zijn mogelijk gemaakt

doormethodologische innovaties die in dit proefschrift nader worden beschreven

ennaderwordenuitgewerkt. Mijnproefschrift bevat tweedelen, diedieovereenkomen

met de twee bovengenoemde thema’s.

Hoofdstuk 1 biedt een uitgebreide introductie op de twee thema’s. Ik leg uit hoe

mechanistische, individu-gebaseerde simulatiemodellen kunnen bijdragen aan

een beter begrip vande ecologie en evolutie van de dierlijke bewegings- en verdel-

ingspatronen.. Onder meer leg ik uit dat vaak voorkomende bewegingspatronen,

zoals de verplaatsingen van dieren tijdens het foerageren, even goed (of zelfs

beter) geschikt zijn om de ecologische en evolutionaire oorzaken van dierlijke

beweging te begrijpen als grootschalige maar sporadische gebeurtenissen, zoals

geboorteverspreiding of jaarlijkse migratie.

In Deel I beschouw ik het probleem hoe de verplaatsingsstrategieën met be-

hulp van de big data van trackingsystemen ontrafeld kunnen worden. Ik was als

coauteur betrokken bij een recent overzichtsartikel in Science (niet opgenomen
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in mijn proefschrift; zie de lijst met publicaties) dat een handige inleiding tot de

problematiek geeft.

Hoofdstuk 2 beschrijft een aantal praktische aspecten van het werken met

de enorme ruimtelijke datasets die worden gegenereerd door high-throughput

trackingsystemen, die de verplaatsingen van honderden dierenmet een zeer hoge

spatio-temporele resolutie kunnen tracken (met eennauwkeurigheid vaneenpaar

meter enmet een interval van een paar seconden). Ik behandel het opschonen,

aggregeren, segmenteren en clusteren van data, en bespreekmanieren om deze

methoden op een reproduceerbare en efficiëntemanier te implementeren. Hierbij

maak ik gebruik van recentelijk ontwikkelde methoden uit andere vakgebieden

(softwareontwikkeling en andere big data vakgebieden zoals genomics). Het

ontwikkelen van robuuste en reproduceerbare methoden voor dataverwerking is

volgens mij een hoeksteen van de bewegingsecologie van de toekomst.

In Intermezzo A illustreer ik aan de hand van een voorbeeld zowel de tech-

nische als de esthetische aspecten van het visualiseren van bewegingsdata. Dit

resulteerde in een kaart die in 2021 de Mapping Animal Movements-competitie

van de British Ecological Society heeft gewonnen.

In Hoofdstuk 3 laat ik zien hoe een combinatie van fijnmazige bewegingsdata

en de analyse van ‘gezichtsvelden’ (wat een individueel dier daadwerkelijk kan

zien vanuit zijn locatie) nieuwe inzichten geeft in de verplaatsingsstrategieën en

habitatselectie van ruiende (en dus kwetsbare) vogels. De analyse laat zien dat de

beslissingen van ruiende vogels voornamelijk worden bepaald door de toestand

van hun verenkleed (dat bepaald hoe makkelijk zij kunnen vluchten) en de vraag

of en in hoeverre potentiële bestemmingen zichtbaar zijn voor predatoren.

In Deel II beschrijf ik hoe wemet behulp van individu-gebaseerde modellen

inzichten kunnen verkrijgen in de evolutie van bewegingsstrategieën en de ecolo-

gische consequenties van deze strategieën. In Intermezzo B illustreer ik aan de

hand van een eenvoudig voorbeeld hoe dit soort conceptuele modellen kunnen

worden geïmplementeerd. Ook laat ik zien dat de evolutionaire en ecologische

voorspellingen van dit soort modellen substantieel kunnen verschillen (kwanti-

tatief en kwalitatief) van de uitkomsten van wiskundige modellen.

In Hoofdstuk 4 bestudeer ik eenmodel voor de evolutie van bewegingsstrate-

gieën in het verband van voedselcompetitie. Dit is het eerste, volledig uitgew-

erkte onderzoek dat gebruikmaakt van het typemodellen dat ik in de Inleiding

bepleit. In dit model zijn de verplaatsings- en foerageerbeslissingen van indi-

viduele dieren afhankelijk van lokale omgevingssignalen (zoals de dichtheid van

voedsel en de aanwezigheid van soortgenoten) en leidt evolutie tot een steeds

betere aanpassing van deze beslissingen aan de competitieve context. De simu-

laties laten zien dat verschillende competitiestrategieën geassocieerd rakenmet
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verschillende bewegingsstrategieën. Dit leidt tot een verdeling van de concur-

rerende individuen over de ruimte die sterk afwijkt van de voorspellingen van

klassieke modellen. Voor elke competitievorm volgen de bewegingsstrategieën

een bepaald patroon, maar binnen dit patroon bestaat een grote diversiteit aan

bewegingsstrategieën. Dit heeft belangrijke consequenties, want vanwege deze di-

versiteit kunnen bewegingsstrategieën zeer snel evolueren als omgevingsfactoren

(zoals de voedselverdeling) veranderen.

Intermezzo C is een (gepubliceerd) commentaar op een individu-gebaseerde

simulatiestudie die niet voldoende rekening houdt met de door mij voorgestelde

principes voor het modelleren van beweging en competitie. We laten zien dat

kleineonnauwkeurighedenen foutenbij de implementatie vaneensimulatiemodel

grote consequenties voor het systeemgedrag kunnen hebben.

Hoofdstuk 5 behandelt de evolutie van verplaatsingsstrategieën na de intro-

ductie van een besmettelijk pathogeen. Via evolutie moet een nieuwe balans

worden gevonden tussen de voordelen van sociale contacten (het verkrijgen van

informatie over potentiële voedselbronnen) en de nieuw ontstane risico’s van

dit soort contacten (de overdracht van het pathogeen). Ik laat zien dat de evolu-

tie verrassend snel verloopt en grote consequenties heeft voor de structuur van

sociale netwerken en de foerageerefficiëntie. Eenmechanistischemodellering

van de introductie en verspreiding van een nieuw, besmettelijk pathogeen, een

scenario dat wereldwijd tot steeds grotere zorgen leidt, kan dus helpen om de

directe en indirecte gevolgen op individueel niveau te voorspellen, evenals de

gevolgen voor de ruimtelijk-sociale organisatie van dierengemeenschappen.

Hoofdstuk 6 combineert demethoden vandeel I en deel II vanmijn proefschrift.

Met behulp vande individuele bewegingspatronen in de simulaties in hoofdstuk 4

valideer ik twee populaire statistischemethoden in de bewegingsecologie: her-

haalbaarheidsanalyse en de analyse van stapselectiefuncties. Ik laat zien dat

de in hoofdstuk 4 gevonden aanzienlijke individuele verschillen in verplaats-

ingsstrategieën door deze methoden vaak niet gedetecteerd worden. Deze studie

laat zien dat simulatiegegevens zeer nuttig kunnen zijn om demogelijkheden en

beperkingen van statistische tools in kaart te brengen.

In Hoofdstuk 7 kijk ik ten slotte terug op de bevindingen van dit proefschrift en

stel ik voor hoe een energetica-aanpak zou kunnen worden gebruikt om sommige

van de fitnessgevolgen van verplaatsingen van dieren in te schatten.

-.-
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