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Thesis Abstract

OVEMENT is a fundamental phenomenon in the natural world, and active
movement in response to environmental drivers is key to animal ecology.
Individuals’ positions in a landscape determine what they perceive, and with
which other animals they associate and how. These ecological interactions feed
back into decisions on where to go next. Such fine-scale, individual-level deci-
sions, made by each individual in a population or species, whether alone or in
concert with others, scale up over time and space to affect large-scale ecological
phenomena such as species distributions and interactions. Over the past twenty
years, the field of movement ecology, driven by rapid advances in animal tracking
technology, has revealed fascinating connections between animal movement and
ecological drivers that were previously impossible to measure.

Now, movement ecology is advancing on new frontiers. This thesis is an episodic,
personal account of developments on two of these frontiers, with which I have
been involved: (i) the study of animal movements using massive datasets, and (ii)
the exploration of the evolutionary causes and consequences of animal movement,
using computer simulation models. These advances have been made possible by
methodological innovations — such as new technologies for animal tracking, or
by adopting new approaches — such as evolutionary individual-based simula-
tions, and reflections on these methods are woven into this work. Organising this
thesis into two parts, one for each of the themes above, I have tried to gain and
present new insight, but also to lay the groundwork for future developments.

CHAPTER 1 provides a broad introduction to these two themes. I set out my
view for how we could better understand the ecology and evolution of animal
movement and spatial distributions by using mechanistic, individual-based sim-
ulation models. In brief, I cover why animals’ foraging dynamics, rather than
rare or sporadic events such as natal dispersal or annual migration, are especially
suited to understanding the evolutionary causes and consequences of movement
as an adaptive behaviour.

In PARTI, I look at our advances in studying the fine-scale movement decisions
of animals using big data collected with new high-throughput animal tracking
systems. A useful primer to high-throughput tracking, with which I was involved,
but which is not presented in this thesis, is a recent review in Science, “Big-Data



Approaches Lead to an Increased Understanding of the Ecology of Animal Move-
»]

ment”*.

CHAPTER 2 lays out some practical aspects of dealing with the massive spatial
datasets that are generated by high-throughput animal tracking systems, which
can track the movement of hundreds of individuals at a very high spatio-temporal
resolution (a few metres’ accuracy, and a few seconds’ interval). I cover data
cleaning, aggregation, and first principles-based segmentation-clustering, as well
as how to implement these methods in reproducible and efficient ways. Adopting
computational best-practices from software development and other big-data
fields such as genomics is the way forward for robust methods development and
reproducible data-processing in movement ecology.

In INTERLUDE A, I include some thoughts on both the technical and aesthetic
aspects of visualising animal movements, and show how I applied them while
making a map that won the British Ecological Society Movement Ecology Special
Interest Group’s Mapping Animal Movements competition in 2021.

CHAPTER 3 combines high-throughput animal movement data with high-
resolution data on the fine-scale, three-dimensional spatial structure of the biotic
and abiotic environment. Specifically, I take a mechanistic look at the proximate
drivers of the movement and habitat selection of moulting birds. I show how
simple mechanistic aspects of a landscape — the visibility of one location from
another, interacts with the physical determinants of movement — the surface
area of birds’ wings, to shape how individuals use their environment. A viewshed
analysis approach that computes fearscapes — areas of high visibility — reveals
that animal movements are a joint outcome of individuals’ current physiolog-
ical state (i.e., the condition of their wings), and individuals’ likely perception
of landscape risk, in terms of whether they could potentially be seen by other
individuals.

In PARTIIL, I look at how we can tackle questions about the evolutionary causes
and consequences of animal movement strategies, using mechanistic individual-
based models of movement decisions. These models, I suggest, are key to under-
standing the evolutionary ecology of movement, because they can incorporate
both essential ecological detail as well as allowing evolutionary dynamics that
are impossible to measure in natural systems.

In INTERLUDE B, I demonstrate how to implement conceptual models that
link the ecology and evolution of animals’ fine-scale movement strategies. Using

Nathan, R. et al. (2022), “Big-Data Approaches Lead to an Increased Understanding of the Ecology
of Animal Movement,” Science, 375/6582: eabg1780.



a prototype model that draws on principles laid out in the Introduction, I show
a simple prototype of the mechanistic models used in this part of the thesis. I
show how such models could lead to qualitatively and quantitatively different
outcomes from those that would be obtained by structuring models according
to classical assumptions — such as random or optimal movement — from evolu-
tionary ecology.

CHAPTER 4 presents a mechanistic, individual-based model of the joint evolu-
tion of animal movement and foraging competition strategies. This is the first
fully fleshed out study using the class of models I advocate in the Introduction.
In this model, individuals’ movement and foraging decisions depend on local
environmental cues, and simultaneously, individual foraging decisions leads to a
restructuring of the cues available in the environment. I show how movement
strategies evolve to match individuals’ competitive context as well as the avail-
ability of information on the resource landscape. Substantial individual variation
is evolved in movement strategies among foragers, and furthermore, I find tight
correlations between evolved movement and foraging strategies under some con-
ditions. Modelling animal movement decisions in an eco-evolutionary context
can help define the envelope of potential outcomes under different ecological sce-
narios in which there are complex feedback loops between individual movement
and environmental cues.

In INTERLUDE C, I include a brief comment about the importance of attention
to detail when building individual-based simulation models. That this comment
had to be written in response to published work shows how it can actually be quite
challenging to interpret and implement even a classic theoretical model (the Ideal
Free Distribution; ‘IFD’) in terms of computational methods — specifically, as
an individual-based simulation model. Such implementations therefore require
both skill and care while coding, as well as a firm understanding of the biological
processes (perception and movement) underlying phenomena such as the IFD.

CHAPTER 5 looks at the evolution of animal movement strategies following
the introduction of an infectious, chronic pathogen, and examines how animals
balance the benefits of social information on resource distributions, against the
risks of pathogen transmission, and the consequences of this evolutionary change
for animal sociality. I show that introducing a pathogen to a population that has
evolved to use social information leads to very rapid changes in movement strate-
gies; this leads to cascading outcomes including more movement overall, fewer
individual associations, lower intake, but also reduced pathogen transmission
compared to non-adapted ancestral populations. Mechanistically modelling the
introduction and spread of a novel infectious pathogen, a scenario of increas-
ing global concern, can help to predict the direct and indirect consequences for

w



individual-level outcomes, as well as impacts on the spatial-social organisation
of animal societies.

CHAPTER 6 uses simulated movement data from individuals in Chapter 4
to validate popular methods in the study of empirical animal movement data:
repeatability analysis, and step-selection functions. I show that individual differ-
ences in movement strategies do not always result in differences in movement
paths, and consequently, statistical tools including repeatability analysis and
step-selection analysis, may not be able to detect often substantial underlying
variation in animals’ movement strategies. Applying statistical methods com-
mon in movement ecology to simulated movement data where the mechanisms
controlling movement are known, can help reveal ecological and evolutionary
scenarios which may confound these methods, enabling more precise inferences
from tracking data.

Finally, in CHAPTER 7, I reflect on the findings in this thesis, and suggest how an
energetics approach could be used to estimate some of the fitness consequences
of animal movement.



Chapter

Introduction: Linking the
Ecology and Evolution of
Animal Movement

Pratik R. Gupte

Animal Movement as a Key Process in Ecology

OVEMENT is key to animal ecology across spatial and temporal scales, as
M nearly all ecological processes have an explicit spatial context (Nathan
et al. 2008). By moving, animals can track seasonal fluctuations in resources,
as migrating blue whales (Balenoptera musculus) — among many other species
— do, when tracking oceanic ‘green-up’ in the form of plankton growth and pro-
liferation (Abrahms et al. 2019; 2021a). Animal movement can also facilitate
or avoid ecological interactions; among these are both inter- and intra-specific
competition. For instance, at very small spatial and temporal scales (on the order
of minutes), competitive interactions including both scramble (‘exploitation’) and
agonistic (‘interference’) competition (Birch 1957; Keddy 2001) are entirely deter-
mined by the relative positions of competing individuals and the resource to be
gained (see also Chapter 4). At larger scales, such interactions can determine how
species’ distributions track environmental changes; in a classic example, compe-
tition for nesting spaces among Western bluebirds (Sialia mexicana) has led to a
rapid expansion of their range across the north-western United States, leading
to the displacement of their less aggressive congener, the mountain bluebird (S.
currucoides; Duckworth and Badyaev 2007).
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CHAPTER 1

The importance of spatial limitations is also evident in other interactions, such
as predation, as prey (in this case, North American elk, Cervus elaphus) attempt
to minimise their likely overlap with predators (wolves, Canis lupus; Fortin et al.
2005; but see more recently Kohl et al. 2018); similarly, when facing parasitism,
hosts attempt to avoid exposure to pathogens and parasites to prevent infection
(Weinstein et al. 2018). Movement plays a key role in aspects of reproduction as
well, such as in the sampling and selection of Arctic breeding sites in pectoral
sandpipers (Calidris melanotos; Kempenaers and Valcu 2017). Finally, spatial
proximity is also key to a number of transmission phenomena, including the
spread of animal culture such as foraging techniques (e.g. opening garbage bins,
among sulphur-crested cockatoos, Cacatua galerita; Klump et al. 2021) and mi-
gration routes (various ungulates across the United States; Jesmer et al. 2018), as
well as the transfer of infectious pathogens (Stroeymeyt et al. 2018; Weinstein
et al. 2018; Monk et al. 2022: see also Chapter 5).

Mobile animals do not only respond to their environments, but actively modify
them as well. For example, small and medium-sized savanna herbivores (ungu-
lates < 1,000 kg) in southern Africa, avoid closed and busy vegetation in order
to lessen predation risk. In so doing, they transfer substantial nutrients to these
areas through dung, altering the spatial distribution of suitable plant habitats,
and thereby the future distributions of vegetated and open areas (Le Roux et al.
2018). The movement and behaviour of large herbivores can even facilitate the
local, short-term growth of plants. In the United States (where many of these
studies are performed), grazing by bison (Bison bison) seemingly induces local
‘green-up’ (the growth of plants) as plants respond to grazing damage (Geremia
et al. 2019). This new growth is especially nutrient-rich, providing higher quality
forage to bison and other animals than would be available without the presence
of a bison herd.

The distributions of such ‘ecosystem engineer’ species can affect that of others
in the same area; in the classic example, wolves cause an ecological cascade by
reducing grazing by their prey, elk (Fortin et al. 2005). Conversely, changes in prey
movements and distribution can alter the movement and behaviour of both their
predators, and even that of scavengers (in Argentina; with Andean condor, Vultur
gryphus scavenging on puma, Puma concolor Kills of the vicufia, Vicugna vicugna;
Monk et al. 2022). Often, species characteristics can determine how individuals
structure their environment: in the example with southern African ungulates
(Le Roux et al. 2018), megaherbivores that are relatively invulnerable to natural
predators move across the landscape with no specific preference for open areas
(where smaller herbivores are safer from ambush hunters). Consequently, they
transfer nutrients more evenly against the small- and medium-sized herbivore
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nutrient transfer gradient (i.e., from open to more closed areas), thus modulating
landscape vegetation structure.

Given the importance of animal movement to natural processes, it is important
tonote that animal movements as a whole are severely affected by human-induced
global changes (Tucker et al. 2018). For example, the driver of changes in vicufia
movements (and substantial mortality) discussed earlier (Monk et al. 2022) was
the spread of Sarcoptic mange (Sarcoptes scabiei), which likely resulted from the
artificial introduction into the region of a related species, llamas (Lama glama),
which themselves were infected with mange. In addition to negative effects for
animals themselves, perturbed natural regimes of animal movements (e.g. due
to climate or land-use change), can severely impact humans too. One important
example is the annual damage and injury resulting from direct human-animal
conflict, especially in regions where megafauna persist or are recovering, but
where they also have insufficient room to undertake natural movements (Abrahms
et al. 2021b). Where mobile wildlife tends to interact, or even just overlap with
humans, or with domesticated animals, there is a strong potential for the spillover
and potential spread of zoonoses to humans, and epizootic diseases to animals
such as poultry or livestock (Keeling et al. 2001; Carlson et al. 2022a; Wille and
Barr 2022). Indeed, the past two and a half years (late 2019 — mid 2022) have
been dominated by the Covid-19 pandemic, which should serve as a reminder
of the perils of disregarding the potential of the natural world to intrude upon
human societies which once thought themselves immune to ecological pressures.

The current and ongoing introduction of the little known tropical African dis-
ease monkeypox (primarily a rodent pathogen) to communities across the world,
and the two-year long but relatively ignored outbreak of the H5N1 strain of avian
influenza in bird populations worldwide (Wille and Barr 2022), should also serve
as a clear example of the risks of shifting species range distributions due to climate
change (Carlson et al. 2022b). Conversely, natural distributions of wildlife could
aid climate mitigation by regulating key biotic and abiotic processes, such as
the flow of soil carbon and nutrients (see Schmitz et al. 2018; Malhi et al. 2022;
and recall Le Roux et al. 2018). While the studies presented here have exam-
ined relatively few individuals (compared to global populations, that is) and with
relatively restricted geographical scope, it is individual-level movements and
behaviours that scale up to influence species- and ecosystem-level phenomena.
The rules governing animal movement are thus crucial to a sound understanding
of ecological processes and patterns generally (Jeltsch et al. 2013; Schlégel et al.
2020; Costa-Pereira et al. 2022).
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Movement in Eco-evolutionary Theory

Movement has long been recognised as an important process, but is often only
implicitly included in the cornerstone models of eco-evolutionary theory. In these
models, evolution is often not incorporated at all, but replaced by the assump-
tion that individuals tend to make choices that maximize their fitness. An early
example is the foundational foraging model of Fretwell and Lucas (1970) that
predicts the distribution of fitness-maximising agents over patchily distributed
resources (‘ideal free distribution’ or IFD). Here, individuals that are ‘ideal’ (hav-
ing full knowledge of the distribution of resources and competitors) and ‘free’
(unconstrained in their movement) scan the whole landscape and immediately
move to the location maximizing their resource intake. The idea underlying the
assumption that individuals tend to move to fitness-maximising locations is that
natural selection will have ‘weeded out’ all strategies that are not maximising
fitness. Yet, there are serious problems with the assumption that well-adapted
individuals are maximising fitness at all times.

First, ‘fitness’ is an intricate concept (Brommer 2000), and it is unlikely that
individuals can judge the full fitness implications of their movement decisions.
Instead, they are likely to be guided by other principles, such as the avoidance
of predators or the amount of food available. Second, individuals will typically
not be able to single out the best possible habitat patch, as they will only have
knowledge on recently visited patches or the patches in their vicinity (Robira et al.
2021). More global knowledge may be obtainable, but obtaining this information
will come at a (fitness) cost. Third, even if individuals are ‘ideal’ (i.e., omniscient)
and ‘free’ (i.e., unconstrained in their movement, which in addition does not
impose any costs), their distribution strongly depends on the mechanisms of
movement (e.g. the sequence in which they move). Seemingly unimportant
details of the movement process can result in quite different distributions in
space, with different evolutionary implications (Houston and Lang 1998; Netz
et al. 2022a). It is therefore essential to consider the movement process itself.

Yet we currently lack theory that explicitly considers the movement process
itself, linking the short-term ecological drivers and outcomes of movement with
its evolutionary causes — essentially, there is no evolutionary extension to the
‘movement ecology paradigm’ (Holyoak et al. 2008; Nathan et al. 2008). This
hinders insight into how intensified selection on species due to global change
would affect animal movement and related phenomena. Such selection is both
rapid and currently ongoing, making the understanding of its potential conse-
quences more than a purely academic exercise (Bonnet et al. 2022). For example,
the unprecedented warming of their Arctic breeding grounds has caused body
size shrinkage among red knots (Calidris canutus), including the development
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of shorter beaks. On their wintering grounds, this results in lower survival for
shorter-billed individuals (e.g. Van Gils et al. 2016). Similarly, Sergio et al. (2022)
demonstrate how selection winnows out black kites (Milvus migrans) with poor
navigation capabilities during each annual migration, demonstrating how evolu-
tionary forces can act very rapidly on even complex behavioural traits.

Eco-evolutionary theory, in order to provide general insights, must necessarily
simplify biological reality down to essential processes. One such simplification
has long been to consider movement to be a population-level property shared by
all individuals. Work on consistent behavioural differences in animals, including
differences in movement, suggests that this assumption is not well supported
(Abrahms et al. 2017; Spiegel et al. 2017; Webber and Vander Wal 2018; Shaw
2020; Webber et al. 2020; Stuber et al. 2022). Yet it is not clear whether movement
syndromes, in the sense of individual consistency and correlation in preferences
for specific environmental conditions, truly exist (as suggested by Stuber et al.
2022), or whether researchers are instead identifying differences among spatial
contexts that heavily influence animal movement (Spiegel and Pinter-Wollman
2022).

A consideration of movement in ecological theory should account for the fact
that animals integrate many internal and external cues when making movement
decisions (Nathan et al. 2008). Individual-based simulation models (IBMs) are
well suited to representing movement as a decision made after integrating multi-
ple cues in complex ecological contexts (Huston et al. 1988; DeAngelis and Diaz
2019). However, most IBMs in the study of animal movement do not tackle the ul-
timate evolutionary drivers of animal movement strategies (with a few exceptions:
Getz et al. 2015; 2016; Netz et al. 2021b). In Part II, I develop and use a novel
class of eco-evolutionary IBMs for broad conceptual insight into the evolution of
animal movement strategies.

Evolutionary models of movement rules treat them as population properties (as
in De Jager et al. 2011; 2020, or Morris 2011), whereas movement is an individual-
level outcome, and it is on individual outcomes that selection acts. When individ-
uals with different movement strategies have equivalent fitness, populations may
show movement polymorphisms (Wolf and Weissing 2012; Getz et al. 2015; Shaw
2020). Including evolutionary dynamics in movement models could thus pro-
vide initial predictions for when individual variation (with its own consequences;
Spiegel et al. 2017) should be expected. We could also gain insight into how move-
ment strategies could possibly evolve under various ecological scenarios. This
second aspect is often ignored, possibly because evolution is considered too slow
to be relevant to the understanding and management of ecological dynamics over
a few decades. This assumption is mistaken, as evolution can be both rapid and
adaptive (Bonnet et al. 2022).

9
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Animal movement behaviours are of many types, and span spatio-temporal
scales, from migration to coordinated movement within a group. This makes it
challenging to pick a behaviour common to all animals, and whose evolutionary
aspects can be easily studied. For instance, although periodic migration (e.g. Gut-
tal and Couzin 2010) and dispersal (e.g. Hillaert et al. 2018) away from the natal
site in early life have received substantial attention from evolutionary biologists,
these are not common to all or even a majority of taxa. Furthermore, such rare
and sporadic events are especially prone to being genetically controlled, with
only a smaller role for adaptive, fine-scale behavioural strategies. One scenario
in which fine-scale strategies are important is the foraging context. All animals,
as heterotrophs, require intake, making (active or passive) foraging a behaviour
shared by nearly all animal taxa. Even among migratory species, foraging is a key
behaviour that enables their journeys. This makes the foraging context a good
starting point for models linking the ecology and evolution of fine-scale adaptive
movement behaviours.

Proposing a New Method for Eco-evolutionary Models of
Animal Movement

I propose models that work forwards from plausible mechanisms to potential
emergent outcomes (Fig. 1.1). This first requires a change in perspective on
individual-based models, from being highly detailed simulations of specific em-
pirical systems (such as in Stillman and GosscCustard 2010; Bocedi et al. 2014;
Diazetal.2021), to being used to obtain broad conceptual insight into ‘What if ...?’
scenarios (see also Getz et al. 2015; 2016; White et al. 2018b; Gupte et al. 2021;
Netz et al. 2021b; Gupte et al. 2022a). The key features of the simulation models
we advocate is first, that they are mechanistic, spatially explicit and individual-
centric, i.e., the functional unit of the model is the individual (animal) in a spatial
context, and that interactions among individuals and their environment are based
on plausible mechanisms (Fig. 1.1A). Second, that individuals move in their spa-
tial context using step-selection based on the sensing of direct local cues, such as
resource or conspecific counts (Fig. 1.1B). The way how an individual chooses
its steps in relation to local cues forms the individual’s movement strategy (see
below). Third and finally, that the models explicitly include both ecological and
evolutionary timescales and dynamics; we propose this be done by considering
multiple generations, and conditioning an individual’s number of offspring — to
which it passes on its movement strategy — on its ecological performance in the
simulation (Fig. 1.1C). This last means that ecological outcomes in one generation
determine the population mixture of movement strategies in the next generation,
linking the ecological and evolutionary timescales.
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CHAPTER 1

Mechanistic, Individual-Centric Simulations

The movement ecology paradigm recognises that animal movement is an
individual-level process that integrates available external and internal cues into
movement decisions (Holyoak et al. 2008; Nathan et al. 2008). Furthermore, the
proliferation of animals’ traits via reproduction — including cognitive traits such
as movement strategies — is dependent on individuals’ ecological performance,
upon which natural selection acts (Hofbauer and Sigmund 1988). Consequently
we advocate for simulation models that follow this individual-centric approach.
Unsurprisingly, individual-based simulation models (IBMs) are ideal for this task,
as they can include substantial ecological detail, including representing internal
states, and interactions among hundreds of individuals and their environment
(Huston et al. 1988; DeAngelis and Mooij 2005; DeAngelis 2018; DeAngelis and
Diaz 2019).

While researchers may begin modelling with a phenomenon in mind, it is im-
portant to shift perspective to instead encode plausible, well supported individual-
level processes (which we also call mechanisms) that could give rise to such phe-
nomena. All ecological processes, including competition (Keddy 2001), signalling
and signal perception (Torney et al. 2011), memory-based navigation (Bracis and
Mueller 2017; Robira et al. 2021), and transmission processes (e.g. learning,
pathogen transfer; see Cantor et al. 2021; Romano et al. 2021) have a strong spa-
tial component. Thus models that study these phenomena should ideally also
incorporate movement, and have an explicit spatial context.

For example, a model of exploitation competition would begin with the process
that causes it: the depletion of discrete resource items due to individual foraging,
which makes the resource unavailable to others (Keddy 2001: see Fig. 1.1A).
This involves deliberately encoding a sequence of individual-level behaviours:
movement that enables accessing a resource, perception of available resources,
harvesting of the resource, and most importantly, removal of the resource from the
landscape (see also Spiegel et al. 2017; Gupte et al. 2021; Gupte et al. 2022a). Here,
the perspective shift lies in seeing that individual-level processes (movement,
perception, foraging) could lead to the emergence of phenomena (exploitation
competition), when local conditions are met (multiple individuals in the same
vicinity going after the same discrete resource items).

Of course, any biological mechanism is an emergent outcome of constituent
sub-mechanisms, down to the molecular level; some abstraction is therefore
necessary. For simplicity, some ecological and evolutionary aspects will have
to be set aside. This is not to say that issues such as sexual reproduction and
non-random mating (included in Getz et al. 2016), detailed disease dynamics
(seen in White et al. 2018b; Scherer et al. 2020), flexible population sizes (as in
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Netz et al. 2021b), or animal memory (e.g. Bracis and Mueller 2017; Robira et al.
2021) are not important, but rather that researchers should focus on features of
biological systems that are important to their study. Classical analytical models
regularly make similar modelling choices to arrive at conceptual insight (see
an examination in Van Der Meer and Ens 1997). Implementing these choices
explicitly in simulation models’ code helps bring these assumptions to the fore,
promoting robust discussion of their importance to model conclusions.

Movement Strategies as Step-selection

We conceive of individual movement across the landscape to take the form of se-
quential step-selection (which we call ‘movement decisions’; see Fig. 1.1B). Box A
provides a primer to the idea of step-selection. In our models, when the individual
moves, it chooses among a number of potential destinations in its neighbourhood,
including its current location (in which case it remains stationary). Box B pro-
vides a brief overview of how step-selection has been used to encode movement
in conceptual models. The step choice is made by assigning each potential step
(including the current location) a step-selection score, which we call the ‘suitabil-
ity’, such that every step i has a suitability S = s, X;; + $,X,; + ... + syXy; + €;. Here,
s, where n € (1,2, ... N) is the individual-specific weight or ‘cue preference’ for the
cue n, and X,, is the value of the cue at the location i. We optionally include the
small error term ¢; (typically drawn from a statistical distribution) to approximate
individuals’ error in assessing a location’s suitability. The cue preferences, and
thus the suitability, can have arbitrarily large or small (positive or negative) values.
This is similar to step- and resource-selection coefficients g (see Box A Manly
2002; Fortin et al. 2005). Individuals are considered to move to the location with
the highest suitability.
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BOX A. STEP-SELECTION ANALYSIS: ANINTRODUCTION Step-selection
analysis is a method developed from the study of empirical animal movement
data, which seeks to determine the drivers of animal movement, with an early
implementation in Fortin et al. (2005)’s study of the movement of deer in
response to wolves, in Yellowstone National Park. In brief, step-selection analysis
contrasts locations at which animals were observed, against locations that they
could have used instead (Fortin et al. 2005). The locations that are considered to
have been available to an animal are conditioned upon its current location —
essentially, this avoids comparing used locations with distant regions that the
animal could not have used at that time. In this sense step-selection analysis
is essentially similar to conditional resource-selection analysis (see as general
reference Manly et al. 2007). The difference is that in step-selection analysis,
the available locations are sampled from a distribution (usually the Gamma
distribution) fitted to the movement distances obtained from the tracking data,
with relative headings (‘turning angles’; see Calenge et al. 2009) drawn from a
Von Mises distribution fitted to the animal’s turning angles, again as seen in the
tracking data (Thurfjell et al. 2014; Signer et al. 2019). The parameters determin-
ing the relative probability that a location is selected given its environmental
attributes (the relative selection strengths, often denoted g) can be estimated via
a maximum likelihood approach using common statistical software (see e.g. for
R Therneau and Grambsch 2000). Overall, the step-selection method assumes
that the probability that an animal will select a location is given by

w(x) = exXp(Bix; + Poxy + ... B,X,)

where w(x) is the selection score for a step, g; is the relative selection strength for
(or against, if a negative value) the location attribute x;.

Crucially, when individuals move by step-selection as in our models, the value
of each cue preference s,, relative to the other cue preferences is more important
than the absolute value of any cue preference by itself (see also the ‘behavioural
hypervolume’ of Bastille-Rousseau and Wittemyer 2019). Thus individuals mak-
ing movement decisions based upon three cues X, for n € (1, 2,3), that have
relatively similar values of the corresponding cue preferences s, may be thought
of as weighing, or preferring each cue relatively equally (or indeed avoiding, if any
s, < 0). The relative values of each individual’s cue preferences taken together,
may be thought of as the individual movement strategy. Interlude B shows how
these strategies can be visualised and interpreted when they are comprised of a
small number of preferences.

In our models, we assume individuals have a constant instantaneous speed,
which means that all steps have the same distance (see a similar implementation
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in Spiegel et al. 2017). This is different from step-selection analysis of empirical
data, which draws steps from a movement kernel (Manly 2002; Fortin et al. 2005;
Avgar et al. 2016). Drawing steps from a kernel (see e.g. 2018b) is not mechanis-
tic, as the movement kernel idea derives from a phenomenological description
of movements observed from animal tracking or relocation data (Fortin et al.
2005). Instead, our models allow movement kernels (and overall speeds, and
‘home ranges’) to emerge from individual movement decisions (yet see below for
an alternative). Cues take the form of numeric values assigned to basic compo-
nents of the individual’s local environment, such the number of food items or
of conspecifics (both integer values), or some environmental property, such as
temperature (which could be a decimal value). This allows individuals’ movement
decisions to be interactions of intrinsic, heritable preferences, and different com-
ponents of the environment. Spatio-temporal variation in cues can be externally
forced (e.g. periodic fluctuations representing seasonality), but the much more
interesting case is when such variation emerges from the movements and other
behaviours of individuals.

There are two main mechanistic alternatives to our linear-function step-selection
approach. First, suitability scores could be computed using more complex func-
tions (e.g. quadratic functions to allow for avoidance thresholds; see White et al.
2018b) — but this could make movement strategies more challenging to under-
stand. Second, the movement process could be based on separately generating a
movement distance and relative heading (‘turning angle’; Calenge et al. 2009),
rather than selecting from among steps (Mueller et al. 2011). In contrast with
our approach where individuals have a fixed speed, the latter approach allows
variable speeds. The drawback is that while movement distances are easily repre-
sented by linear functions, the turning angle is a circular measure that cannot
be properly linearised. A complex function such as an artificial neural network
(ANN) — standing in for an animal’s cognitive mechanisms — could generate both
distances and valid turning angles, but the ANN parameters would be challenging
to interpret as a movement strategy (Mueller et al. 2011; but see Bastille-Rousseau
and Wittemyer 2019 for dimension reduction approaches). Nonetheless, this
approach is the preferable mechanistic alternative to assuming a movement ker-
nel, as it too allows phenomenological movement descriptors (e.g. home range,
step-length distribution) to emerge from individual movement decisions.

Integrating Ecological and Evolutionary Timescales

The final feature of our model is the integration of ecological and evolutionary
timescales. This can be done by adopting the mechanistic, individual-centric
approach and modelling reproduction; this allows individuals to pass on heritable
traits — including movement strategies — to their offspring. If individuals with
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BOX B. USING STEP-SELECTION IN CONCEPTUAL MODELS Step-
selection analysis is now widely used in animal movement ecology, with
specialised implementations for habitat-specific movement characteristics
(Avgar et al. 2016), decision points identified from very high-resolution data
(Munden et al. 2021); it can also be extended to estimate animals’ utilisation
distributions (Signer et al. 2017). Indeed, recall that step-selection analysis
is used even in this thesis (Chapter 3). Despite its popularity and ease of
implementation, step-selection has seldom been used in individual-based
simulation models of animal movement. One good example of using a step
selection approach is White et al. (2018b), who implemented a movement-disease
model wherein individuals move across a grid, with their steps determined by
their relative selection strengths (g;) for cell attributes (x;) such as resource levels
or conspecific densities (in this sense they describe it as resource selection). In
such models, individuals assign a selection score (i(x)) to their current locations,
and to neighbouring locations, and make the step with the highest score — this
may mean staying in place! Furthermore, §; values can be programmed to vary
randomly or systematically in the population, to examine the effect of having
individuals with a broad range of responses to similar cues (as White et al. 2018b
do). In conceptual individual-based models such as mine, I refer to the selection
score as ‘suitability’ S = X s;x; where S, the suitability of the potential location,
is simply the sum of the interaction of the individual’s selection strengths
(which I call a ‘preference’; s;) and the value of the corresponding cue at that
location (x;). In contrast with the step-selection approach, I assume that the
individual moves in the direction of maximal suitability. Given that the ‘cue
preferences’ are individual properties, they can be considered to be heritable
between generations of a population, allowing the examination of evolutionary
dynamics. This concept is examined further in the final scenario of my model,
and models implementing this approach are described in Chapters 4 and 5.

better ecological performance are considered to have more offspring, this would
lead to the proliferation of their strategies. This would allow the mechanistic
movement strategies to have evolutionary consequences, and in a scenario with
discrete, non-overlapping generations, the ecological outcomes of individuals
in one generation would determine the population-level mixture of behavioural
strategies in the next generation. The same evolutionary dynamics could be ap-
plied to individual traits other than the cue preferences as well, to potentially
examine the co-evolution of movement with behavioural or physiological traits
(see e.g. Chapter 4). This approach, which we call the ‘weighted lottery’, de-
rives from population genetics, and specifically from the replicator equation,
which is fundamental to evolutionary biology (Hofbauer and Sigmund 1988). The
replicator equation states that the expected frequency of a strategy in the next
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generation is proportional to its frequency in the present generation, times the
average lifetime reproductive success of individuals using that strategy.

Here it is important to acknowledge that attempts to mimic biological evolution
in individual-based models have previously been made, in the form of so-called
‘genetic algorithms’ (GAs: Hamblin 2013). Genetic algorithms have been applied
to animal ecology, often coupled with individual-based models, but are relatively
rare (see Beauchamp and Ruxton 2007; Hamblin et al. 2010; Hamblin 2013; Getz
et al. 2015; 2016), possibly because their development and use is recognised
as unsuitable for evolutionary biology. While GAs were conceptualised to find
the best solutions to complex optimisation problems, many eco-evolutionary
contexts have no single, stable solution; moreover, environmental heterogeneity
may mean that multiple solutions are equally viable (Wolf and Weissing 2012).
Furthermore, the GA conception of selection is often biologically unrealistic
(e.g. truncation and tournament selection; Hamblin 2013). This is illustrated
by Getz et al. (2015), which uses a specific form of truncation selection, called
‘simulated annealing’, wherein only the top 50% of individuals reproduce, and
the frequency of variation (essentially, the rate of mutations) becomes smaller
with each generation — neither of these are good representations of biological
systems. Consequently, I do not believe that the GA approach is broadly suitable
for models that seek to study relatively open-ended evolution (although some
specific cases may be useful; see ‘roulette wheel selection’ in Hamblin 2013).

Versatility of Individual-Based Eco-evolutionary Models

Ifocusonthree broad yet relatively distinct classes of scenarios that are amenable
to investigation using our mechanistic, eco-evolutionary modelling approach.
These are typically scenarios in which our current understanding of animal ecol-
ogy suggests that multiple alternative or co-existing adaptive responses are pos-
sible. I stress that this is how such models should be considered: as tools that
enable the broad exploration of hypothetical scenarios, some of which I lay out
below. I caution against expecting eco-evolutionary dynamics known from ana-
lytical models; for instance, while steady-state eco-evolutionary equilibria may
emerge in some models (e.g. Getz et al. 2015; 2016; Gupte et al. 2021; Gupte
et al. 2022a), it is unrealistic to expect such dynamics from all models (see e.g.
Netz et al. 2021b). Morever, an exploration of the parameter space, especially in
terms of the environmental regime (e.g. environmental productivity, periodic-
ity, or variation), could help generate broad predictive frameworks, with which
empirical data could be compared. Finally, as an added feature, I suggest how
eco-evolutionary IBMs can be used to investigate the performance of statistical
methods commonly used in animal ecology.
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Changes in the Environmental Regime

A key concern currently is knowing how the climate crisis is likely to affect
animal spatial ecology, and I argue it is also important to know whether animal
populations’ evolutionary dynamics are likely to play a large role (e.g. Botero
et al. 2015). For example, climate change is likely to induce greater variability
in environmental conditions, thereby altering the spatial structure of resource
landscapes (e.g. a transition from patchy to homogeneous resource landscapes).
When resources are more homogenously distributed, direct resource cues (F in
Fig. 1.1) are likely to be more widespread, potentially reducing the importance of
social information (conspecific presence; H, N in Fig. 1.1), which could indicate a
resource cluster. Yet with resources sparsely distributed, it may be important for
animals to avoid conspecifics already at a resource cluster, to avoid exploitation
competition — this would require social information to acquire a high (negative)
weight for movement decisions. This scenario could be studied by building a
model wherein the landscape spatial structure is altered after an initial (long)
period of stability. Key questions that could be answered with such models are
include whether a change in resource spatial structure — without a change in
actual abundance — can lead to changes in movement strategies; whether move-
ment strategies evolved to deal with changed spatial structure then also result in
anon-ideal distributions of animals relative to resources (a test of Fretwell and
Lucas 1970; Parker 1978); and whether different animal social structures could
emerge (see Tanner and Jackson 2012; Webber et al. 2022).

Joint Evolution of Movement and Behavioural Strategies

Animal movement strategies alone are insufficient to explain individuals’ eco-
logical niches; individuals must combine these with other decisions, such as
which resources to exploit (Pulliam 1974; Van Gils et al. 2015). In a scenario
where there are two distinct types of prey, individuals could potentially prefer to
use the locally more abundant prey (Emlen 1966; Pulliam 1974). Alternatively,
individuals could specialise upon one of the two prey types; this could be on the
prey type preferred by most other individuals (whereby social information on
prey clustering could be useful; positive density dependence), or indeed upon the
less preferred prey type, as this could reduce competition (negative density depen-
dence). In this context, it is not clear how prey type preferences would evolve, but
movement and foraging strategies could potentially be correlated, making it an
ideal case for exploration with the class of models I advocate. This scenario could
be explored with a model containing two overlapping prey type distributions,
say A and B, and allowing individuals to sense and have a preference for these
different prey types (s, sg, instead of s, in our Fig. 1.1). Simultaneously, it would
be appropriate to consider prey choice to also be a flexible decision, and allow
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individuals to mechanistically choose, at each step, which prey type they want to
target. Such a simulation could reveal the emergence of substantial individual
variation in the preferences for the prey types, and potentially correlations with
foraging movement strategies, forming a movement-behaviour syndrome (see
e.g. Eckhardt 1979). More specific prey choice models could investigate how for-
aging individuals themselves may be a type of prey, through kleptoparasitism —
this scenario is explored in Chapter 4. Models could also be extended to multiple
trophic levels by including predators, in order to study the evolutionary arms-race
of movement strategies between predators and prey (Netz et al. 2021b).

Introduction of New Eco-evolutionary Dynamics

The introduction to an environment of a novel biotic component could sub-
stantially alter existing eco-evolutionary dynamics; the introduction of a novel
pathogen (or strain) to a population is a key example of current relevance (Carlson
et al. 2022a; see also Monk et al. 2022 as a case study). Novel pathogen intro-
ductions should be expected to impose selection against animal sociality (e.g.
Ashby and Farine 2022), but sociality emerges from an interaction of individual
behaviour and the local environment, including the social environment (Tanner
and Jackson 2012). To examine how a novel pathogen could affect the evolution
of animal movement strategies, our modelling framework could be adapted into
a movement-disease model following templates in White et al. (2018a). For in-
stance, a pathogen could spread among spatially proximate individuals with some
small probability p, and impose an energetic (and hence, fitness) cost §E. Such a
model could reveal whether the novel pathogen introductions impose selective
pressure against individual preferences for sociability as a proxy of transmission
risk (Weinstein et al. 2018). Such a scenario, with special reference to social infor-
mation use, is explored in Chapter 5. Recording and logging spatial associations
and pathogen transmissions among simulation individuals could help provide
useful expectations against which to compare transmission dynamics inferred
from animal tracking data (Wilber et al. 2022; see Robitaille et al. 2019; Albery
et al. 2021 for background).

Using Mechanistic Models to Probe Current Statistical Methods

Movement models are regularly used to simulate tracks with known features
in order to examine and improve the performance of statistical tools (such as seg-
mentation algorithms; see e.g. Gurarie et al. 2016; Michelot et al. 2016; Patin et al.
2020). One area which could benefit from a similar understanding of commonly
used methods is the study of individual variation in movement; specifically, this
could help determine whether studies are truly picking up ‘spatial personali-
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ties’ from the confounding factors of environmental differences among tracked
animals (Spiegel and Pinter-Wollman 2022; Stuber et al. 2022).

The class of mechanistic movement models I advocate could help explore
whether current statistical tools can reliably detect individual differences in move-
ment decision-making mechanisms. For instance, recording the movement paths
of model agents, as well as their cue preferences and other traits (e.g. evolved
prey-type preferences), and applying a repeatability approach, could help deter-
mine how the fitting of certain individual attributes as fixed effects could affect
repeatability scores (vs. leaving them out). Similarly, recording the local cues
available to individuals while making movement decisions would yield exactly
the matched case-control data used in fitting step-selection functions (see Signer
et al. 2019) Sub-sampling this data (to simulate low-resolution tracking), or using
a static predictor such as landscape productivity (as is often used in empirical
studies; e.g. NDVI: Pettorelli et al. 2011) could help demonstrate the benefits of
using high-throughput tracking (Nathan et al. 2022), and the issues around using
broad static predictors of landscape conditions. Overall, by treating a simulation
model with simple movement strategies as one would empirical animal tracking
data, one could explore the performance of popular statistical tools with data
from known eco-evolutionary contexts — Chapter 6 explores this scenario.

Structure of this Thesis

In this Thesis, I take a broad approach to study both animal movement ecology,
as well as presenting a framework for conceptual models to study the evolution of
animal movement strategies. The thesis is divided into two parts, with five main
chapter that are described here.

Modern movement ecology has become a ‘big data’ field (Nathan et al. 2022).
In Part 11 focus on studying animal movement ecology using tracking data and
correlative statistical models, but from a strongly mechanistic perspective. In
Chapter 2, I synthesise methods that can help overcome current limitations and
issues in modern high-throughput tracking data. I present conceptual workflows
to prepare high-throughput animal tracking data for further analysis, and may be
seen as a more detailed explanation of the principles I contributed to Nathan et al.
(2022). In brief, modern, high-throughput animal tracking increasingly yields
‘big data’ at very fine temporal scales, and ‘cleaning’ the data to reduce location
errors is one of the main ways to deal with position uncertainty. Though data
cleaningis widely recommended, robust guidance on how to organise the cleaning
of massive datasets is relatively scarce. A pipeline for cleaning massive high-
throughput datasets must balance ease of use and computationally efficiency,
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in which location errors are rejected while preserving valid animal movements.
Another useful feature of a pre-processing pipeline is efficiently segmenting and
clustering location data for statistical methods, while also being scalable to large
datasets and robust to imperfect sampling. One major advantage when studying
a particular species is that certain aspects of its biology are known — for example,
the maximum speed it could realistically achieve. These physical constraints can
be taken into account to filter data, and identify behavioural bouts in ways that
are easy to interpret (Barraquand and Benhamou 2008). I show how taking this
mechanistic view to filtering animal positioning data can be used with any high-
throughput animal movement data in which the high data-volume combined
with knowledge of the tracked individuals’ biology can be used to reduce location
errors.

In Chapter 3, I leverage the methods for improving and working with high-
throughput tracking data that I developed in Chapter 2. I take an explicitly mech-
anistic view to studying the drivers of movement and habitat selection in a unique
group of animals: moulting birds. The flight surfaces of bird wings require regular
renewal through a process called moult — shedding worn out feathers and grow-
ing fresh ones — presenting birds with the dilemma of needing more resources
for feather growth just when their flight capacity is reduced, making them more
vulnerable to predation. I combine animal tracking and experimental approaches
to present a first quantification of the direct effects of wing moult (in terms of
reduced flight efficiency) on the movement and use of sheltered habitats, in four
non-migratory passerine species. Rather than using a broad predictor such as
vegetation productivity as a proxy for shelter (Pettorelli et al. 2011), I instead
take a viewshed ecology approach (Aben et al. 2018), and directly quantified
which areas of the landscape were visibile to potential predators (the ‘fearscape’
Olsoy et al. 2015). I use the methods, including the residence patch algorithm,
developed in Chapter 2, to measure how non-moulting, naturally moulting, and
artificially manipulated birds use sheltered areas. I apply both simple statistical
models as well as step-selection analyses to analyse birds’ habitat selection (Fortin
et al. 2005; Avgar et al. 2016). Later, in Part II, I use the models described there to
examine what we can learn about step-selection analysis, by using it to recover
the mechanisms of simulation models (a better explanation of the links between
the two is presented in Chapters 4).

In Part II, I demonstrate how conceptual insights can be obtained from mech-
anistic models of intermediate complexity that integrate both the ecological
dynamics of animal movement, and their evolutionary causes and consequences.
The key feature of such models is to let individual-level ecological outcomes
in one generation influence which movement strategies are present in future
generations, thus establishing a feedback loop between animals’ evolutionary
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history and their current spatial ecology. Specifically, I advocate that movement
be modelled as an individual response to local cues rather than a random walk
or some ruleset shared by all individuals (see Mueller et al. 2011). I have taken
this mechanistic in Chapters 4 and 5. In the models presented in those chapters,
I used individual-based models, in which individuals have evolved movement
preferences — these are explained below — and thus make quite different deci-
sions when presented with similar cues (Getz et al. 2015; White et al. 2018b).
Yet an open question when including such behavioural variation is whether the
emergent outcomes may be transient phenomena that are quite different from
the dynamics obtained on evolutionary timescales. Consequently, I additionally
advocate for movement models to be embedded in an evolutionary context, with
individuals’ movement outcomes subject to selection, and their movement pref-
erences subject to random change (mutation). I expand on this view further in
this Introduction, and describe the three chapters comprising this Part in brief
below.

In Chapter 4, I examine the joint evolution of movement and two different
foraging strategies: searching for food items, and kleptoparasitism, an extreme
form of interference competition. Although competition has an explicit spatial
context, eco-evolutionary models rarely consider how competition strategies, in-
cluding kleptoparasitism, might evolve alongside evolving movement strategies.
I model movement strategies as heritable, individual-specific combinations of
preferences for environmental cues, similar to step-selection coefficients (Manly
2002; Fortin et al. 2005). Step-selection coefficients have been used previously to
cluster individuals with different preferences for local cues into discrete strategies
(Bastille-Rousseau and Wittemyer 2019). I study the evolutionary dynamics of
competition and movement strategies using individual-based simulations. I addi-
tionally, investigate the implications of this joint evolution for the distribution of
consumers over the model landscape. Overall, this chapter lays the groundwork
for a mechanistic approach to studying competition — and other behaviours —
in a spatial context, and suggests how evolutionary modelling can be integrated
with current work in animal movement ecology.

In Chapter 5, I aim to investigate a scenario that pre-occupied me over the
course of the pandemic: the evolutionary consequences of the introduction of
novel pathogens for animal social interactions, which are of course, outcomes
of animal movement. Using a simulation model developed from the work I pre-
sented in Chapter 4, I examine how animals balance the risk of pathogen transmis-
sion against the benefits of public information about the location of ephemeral
resource patches. Studying a scenario in which a fitness-reducing infectious
pathogen is introduced into a population which has initially evolved movement
strategies in its absence, I show how pathogen introduction changes host move-
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ment strategies, and how this determines the emergent structure of socio-spatial
networks. The use of the deterministic step-selection framework borrowed from
Chapter 4, which can be directly related to step-selection analyses conducted on
empirical animal tracking data (Bastille-Rousseau and Wittemyer 2019), makes
this a powerful modelling framework, with initial predictions for the evolutionary
and ecological consequences of wildlife pathogen spillover scenarios.

In Chapter 6, I apply two popular statistical methods, repeatability analysis,
and step-selection analysis, to the movement paths generated by agents from
Chapter 4. Having encoded these agents to move using simplified step-selection,
here, I examine what current statistical methods in movement ecology can tell us
about individual variation in a population where the axes of variation are already
fully known. I show how it is challenging, to recover the true causes of variation
in animals’ movement strategies from their actual movement paths (a major line
of work in movement ecology). I demonstrate that statistical methods can yield
quite different conclusions when applied to data in which underlying movement
strategies are not accounted for, and therefore caution practitioners analysing
empirical data to be careful with potential sources of behavioural variation.

Finally, in Chapter 7, I reflect upon the findings of this thesis, and upon poten-
tial future work.
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PartI

A MECHANISTIC PERSPECTIVE ON
ANIMAL MOVEMENT ECOLOGY

The central challenge of the study of animal movement is knowing
where animals actually are, with a high degree of spatial and tempo-
ral accuracy. Harnessing the massive datasets generated by modern
tracking systems for robust ecological inferences requires computa-
tional methods that are informed by the biology of the systems to
which they are applied. Additionally, taking a mechanistic view can
reveal the world as animals see it.

In the first part of this thesis, I demonstrate how to deal with large
spatial datasets to investigate the direct drivers of animal movement.
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CHAPTER 2

Spatial is special.

— A common maxim in data science.

Abstract

Modern, high-throughput animal tracking increasingly yields ‘big data’ at very
fine temporal scales, and ‘cleaning’ the data to reduce location errors is one of
the main ways to deal with position uncertainty. Though data cleaning is widely
recommended, inclusive, uniform guidance on this crucial step, and on how to or-
ganise the cleaning of massive datasets, is relatively scarce. A pipeline for cleaning
massive high-throughput datasets must balance ease of use and computationally
efficiency, in which location errors are rejected while preserving valid animal
movements. Manual methods being prohibitively time consuming, and to boost
reproducibility, pre-processing pipelines must be automated. We provide guid-
ance on building pipelines for pre-processing high-throughput animal tracking
data to prepare it for subsequent analyses. We apply our proposed pipeline to sim-
ulated movement data with location errors, and also show how large volumes of
cleaned data can be transformed into biologically meaningful ‘residence patches’,
for exploratory inference on animal space use. We use tracking data from the
Wadden Sea ATLAS system (WATLAS) to show how pre-processing improves its
quality, and to verify the usefulness of the residence patch method. Finally, with
tracks from Egyptian fruit bats Rousettus aegyptiacus, we demonstrate the pre-
processing pipeline and residence patch method in a fully worked out example.
To help with fast implementation of standardised methods, we developed the R
package atlastools, which we also introduce here. Our pre-processing pipeline
and atlastools can be used with any high-throughput animal movement data in
which the high data-volume combined with knowledge of the tracked individuals’
movement capacity can be used to reduce location errors.



PRE-PROCESSING ANIMAL TRACKING DATA

Introduction

NIMAL movement is an adaptive, integrated response to multiple drivers, in-
A cluding internal state, life-history traits and capacities, biotic interactions,
and other environmental factors (Holyoak et al. 2008; Nathan et al. 2008). The
movement ecology framework links the drivers, processes, and fitness outcomes
of animal movement (Nathan et al. 2008), and remotely tracking individual ani-
mals in the wild is the methodological mainstay of movement ecology (Wikelski et
al. 2007; Nathan et al. 2008; Hussey et al. 2015; Kays et al. 2015). A key challenge
with observed tracks is to extract information on the behavioural, cognitive, social,
ecological and evolutionary processes that shape animal movement. Addressing
this challenge requires investigating the relationships between movement and its
drivers at the fine scales at which animals sense and respond to variation in their
environment. Tracking data, which are observations of a continuous process
(animal movement) at discrete timesteps, reveal useful information about the
movement process when the tracking interval is considerably shorter than the
typical duration of a movement mode (Getz and Saltz 2008; Nathan et al. 2008;
Noonan et al. 2019). This can be accomplished by wildlife tracking systems that
collect position data from many individuals at high temporal and spatial resolu-
tion (i.e., high-throughput tracking) relative to the scale of the movement mode
of interest (Getz and Saltz 2008).

High-throughput tracking technologies include GPS tags (Strandburg-Peshkin
et al. 2015; Harel et al. 2016; Papageorgiou et al. 2019; Klarevas-Irby et al. 2021),
tracking radars (Horvitz et al. 2014), and computer vision methods for track-
ing entire groups of animals from video recordings (Pérez-Escudero et al. 2014;
Rathore et al. 2020). Furthermore, high-throughput wildlife tracking is routinely
provided by terrestrial reverse-GPS systems such as ATLAS (Advanced Tracking
and Localization of Animals in real-life Systems: Toledo et al. 2014; 2016; Weiser
et al. 2016; Toledo et al. 2020) — see also (MacCurdy et al. 2009; MacCurdy et al.
2019) — and underwater acoustic reverse-GPS tracking of aquatic animals (Jung
et al. 2015; Baktoft et al. 2017; 2019; Aspillaga et al. 2021a,b). Finally, low resolu-
tion tracking over a long duration may also capture important aspects of animal
behaviour at certain time-scales (e.g. migration, long-range dispersal; Getz and
Saltz 2008), thereby being ‘relatively’ high-throughput.

Although high-throughput tracking provides a massive amount of data on the
path of a tracked animal, these data present a challenge to ecologists. When
tracking animals at a high temporal resolution, the location error of each position
may approach or exceed the true movement distance of the animal, compared
to low-resolution tracking with the same measurement error. This leads to an
over-estimation of the true distance moved by an animal between two discrete
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time-points, leading to unreliable behavioural metrics ultimately derived from
movement distance, such as speed and tortuosity (see Calenge et al. 2009; Hurford
2009; Ranacher et al. 2016; Noonan et al. 2019). Additionally, the location error
around a position introduces uncertainty when studying the relationship between
animal movements and either fixed landscape features (e.g. roads), or mobile
elements (e.g. other tracked individuals), as well as confounding estimates of
habitat selection.

Users have two main options to improve data quality, (i) making inferences after
modelling the system-specific location error using a continuous time movement
model (Jonsen et al. 2003; 2005; Johnson et al. 2008; Patterson et al. 2008; Flem-
ing et al. 2014; Fleming et al. 2020; Aspillaga et al. 2021b), or (ii) pre-processing
data to clean it of positions with large location errors (Bjgrneraas et al. 2010). The
first approach may be limited by the animal movement models that can be fitted
to the data (Fleming et al. 2014; Noonan et al. 2019; Fleming et al. 2020), may
result in unreasonable computation times, or may be entirely beyond the com-
putational capacity of common hardware, leading users to prefer data cleaning
instead. Data cleaning reveals another challenge of high-throughput tracking: the
large number of observations make it difficult for researchers to visually examine
each animal’s track for errors (Weiser et al. 2016; Toledo et al. 2020). With manual
identification and removal of errors from individual tracks prohibitively time
consuming, data cleaning can benefit from automation based on a protocol.

Pre-processing of movement data — defined as the set of data management
steps executed prior to data analysis — must reliably discard large location er-
rors, also called outliers, from tracks (analogous to reducing false positives) while
avoiding the overzealous rejection of valid animal movements (analogous to re-
ducing false negatives). How well researchers balance these imperatives has
consequences for downstream analyses (Stine and Hunsaker 2001). For instance,
small-scale resource selection functions can easily infer spurious preference and
avoidance effects when there is uncertainty about an animal’s true position (Viss-
cher 2006). Ecologists recognise that tracking data are imperfect observations
of the underlying movement process, yet they implicitly consider cleaned data
equivalent to the ground-truth. This assumption is reflected in popular statistical
methods in movement ecology such as Hidden Markov Models (HMMs) (Lan-
grock et al. 2012), stationary-phase identification methods (Patin et al. 2020), or
step-selection functions (SSFs) (Barnett and Moorcroft 2008; Avgar et al. 2016;
Signer et al. 2017), which expect minimal location errors relative to real animal
movement (i.e., a high signal-to-noise ratio). This makes the reproducible, stan-
dardised removal of location errors crucial to any animal tracking study. While
gross errors are often removed by positioning-system algorithms in both GPS
and reverse-GPS setups, ‘reasonable’ errors often remain to confront end users



PRE-PROCESSING ANIMAL TRACKING DATA

(Fischler and Bolles 1981; Ranacher et al. 2016; Weiser et al. 2016). Further,
as high-throughput tracking is deployed in more regions and for more species,
standardised pre-processing steps should be general enough to tackle animal
movement data recovered from a range of environments, so as to enable sound
comparisons across species and ecosystems.

Despite the importance and ubiquity of reducing location errors in tracking
data, movement ecologists lack formal guidance on this crucial step. Pre-processing
protocols are not often reported in the literature, or may not be easily tractable
for mainstream computing hardware and software. Some tracking data, such
as GPS, are autonomously pre-processed without user access to the raw data
(using error estimates and Kalman smooths; Kaplan and Hegarty 2005: and sub-
stantial location errors may yet persist). However, filtering out positions using
estimates of location error alone may not be sufficient to exclude outliers which
represent unrealistic movement but have low error measures (Ranacher et al.
2016; Weiser et al. 2016). When tracking systems do make their raw data available
to researchers, this can enable users to better control the data pre-processing
stage, and to substantially improve data quality while ensuring that cleaning does
not itself lead to unrealistic movement tracks (e.g. Kalman smooths which distort
tracks, Kaplan and Hegarty 2005). This makes identifying and removing biologi-
cally implausible locations from a track an important component of recovering
true animal movement (Bjgrneraas et al. 2010).

Even after removing unrealistic movement, a track may be comprised of po-
sitions that are randomly distributed around the true animal location (Noonan
et al. 2019). The large data-volumes of high-throughput tracking allow for a neat
solution: tracks can be ‘median smoothed’ to reduce small location errors that
have remained undetected (e.g. Bijleveld et al. 2016). Large data volumes may
also need to be thinned, for example, examining environmental covariates as
predictors of prolonged residence in an area (see e.g. Aarts et al. 2008; Bijleveld
etal. 2016; Harel et al. 2016; Bracis et al. 2018; Oudman et al. 2018) might require
thinning of high-resolution movement data to match the lower spatial resolution
of environmental measurements. Data thinning and clustering are also required
to avoid non-independent observations due to strong spatio-temporal autocor-
relation, or to examine the effect of sampling scale on movement metrics and
resource-selection (Fleming et al. 2014; Noonan et al. 2019).

When dealing with datasets that contain many millions of positions, reseachers
may run into computational limits when trying to apply pre-processing steps
to their full dataset. For instance, the size of working memory (RAM) limits the
size of datasets that can be loaded into R, the programming and statistical lan-
guage of choice in movement ecology (Joo et al. 2020a,b; R Core Team 2020).
Data-rich fields such as genomics inspire a possible solution: to break very large
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data into smaller subsets, and pass these subsets through automated computa-
tional ‘pipelines’ (Schadt et al. 2010; Peng 2011). Pre-processing pipelines for
animal tracking data — the set of steps that users apply to prepare the data for a
specific analysis — come with some additional concerns: (i) identifying which
pre-processing steps are necessary, and (ii) ensuring that these steps reproducibly
operate on the data as expected, and as efficiently as possible.

While exploratory data analysis and visualisation can help determine how to
pre-process the data to maximise the signal to noise ratio (Slingsby and Van Loon
2016), standardising implementations of pre-processing techniques into robust,
version controlled software packages (Wickham 2015: e.g. in R, see), can increase
the reliability and reproducibility of animal movement ecology (Haddaway and
Verhoeven 2015; Lewis et al. 2018; Powers and Hampton 2019; Archmiller et al.
2020). Overcoming hard computational constraints on speed and memory usage
for very large data will often require a combination of programming strategies,
such as using tools optimised for tabular data, or parallelised processing.

Here, we present guidelines for reproducibly pre-processing high-throughput
animal tracking data (Fig. 2.1), with a focus on simple, widely generalisable steps
that help improve data quality (Fig. 2.2). We take two important considerations
into account, that (i) the pre-processing steps should be easily understood and
reproduced, and (ii) our implementations must be computationally efficient and
reliable. Consequently, formalising tools as functions in an R package would
improve portability and reproducibility (Wickham 2015; Marwick et al. 2018).
Using simulated movement tracks, we demonstrate simple yet robust implemen-
tations of the pre-processing steps we recommend, conveniently wrapped into
the R package atlastools (Gupte 2020), with a discussion of features that make
these steps more reproducible, and more efficient. We also suggest one poten-
tial application of high-throughput tracking in studies of animal movement and
space use, illustrated by the first-principles based synthesis of ‘residence patches’
from clusters of spatio-temporally proximate positions (sensu Barraquand and
Benhamou 2008; Bijleveld et al. 2016; Oudman et al. 2018).

In two fully worked out examples using our package on real tracking data, we
show how to apply basic spatio-temporal and data quality filters, how to filter out
unrealistic movement, and how to reduce the effect of location error with a median
smooth. In the first example, using calibration data from an ATLAS system,
we show how the residence patch segmentation-clustering method can be used
to accurately identify areas of prolonged residence under real field conditions.
Finally, in our second example, we use ATLAS data from Egyptian fruit bats
(Rousettus aegyptiacus) tracked in the Hula Valley, Israel, to show a fully worked
out example of the pre-processing pipeline and the residence patch method.
While our approach to high-throughput tracking data, and our package of pre-
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processing functions was developed with reverse-GPS ATLAS systems in mind,
both are broadly suitable to a wide range of high-throughput animal tracking data
sources, from underwater acoustic reverse-GPS (Jung et al. 2015; Baktoft et al.
2017;2019; Aspillaga et al. 2021a,b), high-resolution GPS (Strandburg-Peshkin
et al. 2015; Harel et al. 2016; Papageorgiou et al. 2019; Klarevas-Irby et al. 2021),
tracking radars (Horvitz et al. 2014), and visual video tracking (Pérez-Escudero
et al. 2014; Rathore et al. 2020).

Best-Practices for Pre-Processing Workflows

Exploratory data analysis should be the first step towards pre-processing move-
ment data (see Fig. 2.1; Slingsby and Van Loon 2016). Researchers with very
large datasets of perhaps millions of rows should ideally select a representative
subset of these data for exploratory data analysis, including individuals of dif-
ferent species, sexes, or seasonal cohorts. Examples of exploratory data analysis
include plotting heatmaps of the number of observations per unit area across
the study site (Fig. 2.1). Histograms of the location error estimates, plotting the
linear approximations of animal paths between observations, and histograms of
the sampling interval can help determine how data need to be treated so as to
minimise location errors and improve computational tractability (Fig. 2.1). While
pre-processing steps required for datasets will differ between studies and tracking
technologies, we elaborate upon candidate steps and their parameterisation in
following sections (see also Fig. 2.2).

Following exploratory data analysis and the parameterisation of data cleaning
steps, the specific implementation of these steps should be made reliable and
reproducible. Since reproducing pre-processing steps can be challenging when
using only written descriptions from published articles, providing the code to
implement pre-processing steps reduces ambiguity and increases reproducibil-
ity (Haddaway and Verhoeven 2015). For technically advanced users, the best-
practices here are (i) to implement pre-processing steps as ‘functions’, (ii) to
collect related functions — e.g. for similar kinds of data — into a software ‘pack-
age’, (iii) to ‘test’ that the functions handle input as expected, and (iv) implement
‘version control’ throughout, such that the process of development is documented
(Fig. 2.1; Wickham 2015; Perez-Riverol et al. 2016; Alston and Rick 2020).

As an example, our atlastools package incorporates these best-practices, and
may be used as a reference (Gupte 2020). We have written each pre-processing
step as a separate function, and each of these functions is tested, usually on
simulated data, but in some cases also on empirical data (Wickham 2015: see
the directory tests/ in the associated Zenodo repository). Finally, logging error
messages is crucial when passing data through a pipeline, helping determine
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which data subsets could not be handled as expected, and why. Users who would
prefer to rely on pre-existing toolsets and methods can use R packages that follow
these best-practices, such as move (Kranstauber et al. 2011), and sftrack (Boone et
al. 2020). The large size of modern, high-throughput animal tracking data means
that the computational challenge can often be the main challenge in working with
these data. For beginning users, organising their workflows so that they process
subsets of the data (such as one individual) at a time can help overcome limitations
on working memory. Animal tracking data stored in a relational database (e.g.
SQL databases Codd 1970), for example, can be broken into meaningful subsets
based on individual identity and tracking season. These smaller subsets can
then be loaded into working memory, pre-processed, and saved in a separate
location (see Supplementary Material 1, Section 2 for a worked out example on
an SQL database). Using existing tools optimised for tabular data, such as the R
package data.table (Dowle and Srinivasan 2020), can also speed up computation;
atlastools is built using data.table for this reason.

More advanced users seeking substantial speed gains might wish to look into
parallel-processing, and process each subset of the data independently of the
full dataset, for example by using a computing cluster (see also Dai 2021: for
an alternative). Finally, another advanced method, used by popular packages
such as move (Kranstauber et al. 2011) and recurse (Bracis et al. 2018), is to write
one’s own methods in a ‘fast’ low-level language, such as C++, and link these
to R (Eddelbuettel 2013); see also adehabitatLT, which is written partially in C
(Calenge 2006). Beginning practitioners can organise their workflows around
these packages to benefit from the features they incorporate.

Pre-processing Steps, Usage, and Simulating Data

An Overview of Pre-processing Steps and "atlastools'

In the sections that follow, we lay out pre-processing techniques for raw high-
throughput tracking data, and demonstrate working examples of these tech-
niques, which we have collected in the R package atlastools (see Fig. 2.2). Our
package is aimed at getting ‘raw data’ to the ‘analysis’ stage identified by Joo et
al. (2020) in their review of R packages in movement ecology. The package is
based on data.table, a fast implementation of data frames; thus it is compatible
with a number of data structures from popular packages including move, sftrack,
and ltraj objects, which can be converted to data frames (Calenge et al. 2009;
Kranstauber et al. 2011; Boone et al. 2020). Our package functions are suitable for
use with both regularly sampled data, as well as data with missing observations.
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We cover, first, the use of simple Spatio-Temporal Filters to select positions
within a certain time or area. Next, we show how users can Reduce Location
Errorsby removing unreliable positions based on a system-specific error measure,
or by the plausibility of associated movement metrics, such as speed and turning-
angle (Calenge et al. 2009; Seidel et al. 2018). We then show how users can tackle
small-scale location errors by applying a Median Smooth, and users who need
uniformly sampled data, can undertake Data Thinning by either aggregation or
subsampling. At this stage, the data are ready for a number of popular statistical
treatments such as Hidden Markov Model-based classification (Langrock et al.
2012; Michelot et al. 2016). Finally, we show how users wishing simple, efficient
segmentation-clustering of points where the animal showed prolonged residence,
can classify their data into ‘residence patches’ (Barraquand and Benhamou 2008;
Bijleveld et al. 2016) based on the movement ecology of their study species, after
filtering out travelling segments (see System-Specific Pre-Processing Tools).

These pre-processing techniques and package were designed with ATLAS sys-
tems in mind, motivated to meet the rapid growth of studies using this high-
throughput system worldwide: in Israel (Toledo et al. 2014; 2016; Corl et al. 2020;
Toledo et al. 2020; Vilk et al. 2021), the UK (Beardsworth et al. 2021a,b), and
the Netherlands (Bijleveld et al. 2021; Beardsworth et al. In press). However, the
principles and functions presented here are ready for use with other massive
high-resolution data collected by GPS (e.g. Papageorgiou et al. 2019), reverse-
GPS (e.g. Aspillaga et al. 2021b) or any other high-throughput tracking system .
Users may construct a pre-processing pipeline comprising of all the techniques
we cover, or implement the modules most suitable for their data. Users are ad-
vised to visualise their data throughout their workflow, and especially to perform
thorough exploratory data analysis, to check for evident location errors or other
issues (Slingsby and Van Loon 2016).

Simulating Data to Demonstrate Pre-Processing Steps

To demonstrate pre-processing steps, we simulated a realistic movement track
of 5,000 positions using an unbiased correlated velocity model (UCVM) imple-
mented via the R package smoove (Gurarie et al. 2017: see Fig. 2.3.a). We added
four kinds of error to the simulated track: (i) normally distributed small-scale
offsets to the X and Y coordinates (small-scale error), (ii) normally distributed
large-scale offsets to a random subset (0.5 %) of the positions (spikes), (iii) large-
scale displacement of a continuous sequence of 300 of the 5,000 positions (pro-
longed spikes; indices 500 - 800), and (iv) we removed 10% of the canonical track
to simulate missing data (see Fig. 2.3.a). To demonstrate the residence patch
method, we obtained data, in the form of 1,000 positions, from a mechanistic,
individual-based simulation model, in which agents move using simple decision
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making rules, and can find high-productivity patches using only ephemeral cues,
such as the density of prey-items and other competitors (Gupte et al. 2021; Netz
and Gupte 2022). The emergent, complex track structure is analogous to the for-
aging movements of animals, and provides a suitable challenge for the residence
patch method and helps to demonstrate its generality.

Spatio-Temporal Filtering

Spatial Filtering Using Bounding Boxes and Polygons

First, users should exclude positions outside the spatial bounds of a study area
by comparing position coordinates with the range of acceptable coordinates (the
bounding box), and removing positions outside them (Fig. 2.3.a). A bounding
box filter does not require a geospatial representation such as a shapefile, and
can help remove unreliable data from a tracking system that is less accurate
beyond a certain range (Beardsworth et al. In press). In some special cases, users
may wish to remove positions inside a bounding box, either because movement
behaviour within an area is not the focus of a study, or because positions recorded
within an area are known to be erroneous. An example of the former is studies of
transit behaviour between features which can be approximated by their bounding
boxes. Instances of the latter are likely to be system specific, but are known from
ATLAS systems. Bounding boxes are typically rectangular, and users seeking to
filter for other geometries, such as a circular or irregularly-shaped study area,
need a geometric intersection between their data and a spatial representation of
the area of interest (e.g. shapefile, geopackage, or sf-object in R). The atlastools
function atl_filter_bounds implements both bounding box and explicit spatial
filters, and accepts X and Y coordinate ranges, an sf-polygon or multi-polygon
object (Pebesma 2018), or any combination of the three to filter the data. When
both coordinate ranges and a polygon are provided, the data is first filtered by
the ranges and then the polygon. The boolean function argument remove_inside
determines whether positions inside the bounds are retained (FALSE) or removed
(TRUE).

Temporal and Spatio-temporal Filters

Tracking data might fail to properly represent an animal’s movement at cer-
tain times, for instance, data recorded before release, or data from shortly after
release when the animal is still influenced by the stress of capture and handling.
Periods of poor tracking quality may result from system malfunctions and un-
usual disturbances, and users may wish to exclude these data as well. Temporal
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(a)

Threshold

;

Speed

Figure 2.3: Simulated movement data showing four kinds of artificially added errors. (i)
Normally distributed small-scale error on each position, (ii) large-scale error added to 0.5% of
positions, (iii) 10% of positions removed to simulate missing data, and (iv) 300 consecutive
positions displaced to simulate a gross distortion affecting a continuous subset of the track. (a)
Tracks can be quickly filtered by spatial bounds (dashed grey lines) to exclude broad regions
(green = retained; grey = removed). (b) location error may affect single observations resulting
in point outliers or ‘spikes’ (red crosses and track segments), or continuous subsets of a track,
called a ‘prolonged spike’ (purple circles, top right), and both represent unrealistic movement.
(c) Histograms of speed for the track (grey = small-scale errors, red = spikes), and the prolonged
spike (purple) show that while spikes could be removed by filtering out positions with both high
incoming and outgoing speeds and turning angles, prolonged spikes cannot be removed in this
way, and should be resolved by conceptualising algorithms that find the bounds of the distortion
instead. Users should frequently check the outputs of such algorithms to avoid rejecting valid
data.

filtering can exclude positions from intervals when data are expected to be un-
reliable for ecological inference, either due to abnormal movement behaviour
or system-specific issues. Temporal filters can be combined with spatial filters
to select specific time-location combinations. For example, studies of foraging
behaviour of a nocturnal animal would typically exclude tracking data from the
animal’s daytime roosts (see Worked Out Example). Users should apply filters in
sequence rather than all at once, and visualise the output after each filtering step
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(‘sanity checks’; see Supplementary Material Section 2). The atlastools function
atl_filter_covariates allows convenient filtering of a dataset by any number of
logical statements, including querying data within a spatio-temporal range. The
function keeps only those data which satisfy each of the filter conditions, and
users must ensure that the filtering variables exist in their dataset in order to
avoid errors.

Filtering to Reduce Location Errors

Filtering on Data Quality Attributes

Tracking data attributes can be good indicators of the reliability of positions cal-
culated by a tracking system (Beardsworth et al. In press). GPS systems provide di-
rect measures of location error during localisation (Ranacher et al. 2016: Horizon-
tal Dilution of Precision, HDOP in GPS), while in reverse-GPS systems, a measure
referred to as Standard Deviation (SD in many datasets), can be calculated from the
variance-covariance matrix of each position as: SD = /Var X + Var Y + Cov XY
(see details in MacCurdy et al. 2009; Ranacher et al. 2016; Weiser et al. 2016;
MacCurdy et al. 2019). Tracking data can also include indirect indicators of data
quality. For instance, GPS systems’ location error may be indicated indirectly by
the number of satellites involved in the localisation. In reverse-GPS systems too,
the number of base stations involved in each localisation is an indirect indicator
of data quality, and positions localised using more receivers are usually more
reliable (the minimum required for an ATLAS localisation is 3; see Weiser et al.
2016; Beardsworth et al. In press). A location error measure associated with each
coordinate pair (similar to GPS HDOP) can be calculated and assigned to a new
column SD using the formula for the sum of correlated random variables

SD = V/VARX + VARY + 2 x COVXY

Unreliable positions can be removed by filtering on direct or indirect measures
of quality using atl_filter_covariates. While filtering on direct quality attributes
and unrealistic movement speeds (see below) will often be sufficient, filtering on
indirect quality indicators is a strategy to consider when direct error measures
are not available.

Filtering Unrealistic Movement

Filtering on system-generated attributes may not remove all erroneous posi-
tions, and the remaining data may still include biologically implausible move-
ment. Users are encouraged to visualise their tracks before and after filtering
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pointlocations, and especially to ‘join the dots’ and connect consecutive positions
with lines (Fig. 2.3.b). Whether the resulting track looks realistic is ultimately
a subjective human judgement, but any decision to filter-out data must remain
independent of the hypothesised movement behavior. This basic principle does
not preclude explicitly integrating prior knowledge of the movement ecology
of the study species to ask, ‘Does the animal move this way?’. Segments which
appear to represent unrealistic animal movement are often obvious to researchers
with extensive experience of the study system (the non-movement approach; see
Bjorneraas et al. 2010). Since it is both difficult and prohibitively time consum-
ing to exactly reproduce expert judgement when dealing with large volumes of
tracking data from multiple individuals, some automation is necessary. Users
should first manually examine a representative subset of tracks and attempt to
visually identify problems — either with individual positions, or with subsets of
the track — that persist after filtering on system-generated attributes. Once such
problems are identified, users can conceptualise algorithms that can be applied
to their data to resolve them.

A common example of a problem with individual positions is that of point
outliers or ‘spikes’ (Bjgrneraas et al. 2010), where a single position is displaced far
from the track (see Fig. 2.3.b). Point outliers are characterised by artificially high
speeds between the outlier and the positions before and after (called incoming and
outgoing speed, respectively; Bjgrneraas et al. 2010), lending a ‘spiky’ appearance
to the track. Removing spikes is simple: remove positions with extreme incoming
and outgoing speeds. Users must first define plausible upper limits of the study
species’ speed (Calenge et al. 2009; Seidel et al. 2018). Here, it is important to
remember that speed estimates are scale-dependent; high-throughput tracking
typically overestimates the speed between positions where the animal is station-
ary or moving slowly, due to small-scale location errors (Ranacher et al. 2016;
Noonan et al. 2019). Even after data with large location errors have been removed,
it is advisable to begin with a liberal (high) speed threshold that excludes only the
most unlikely speeds. Estimates of maximum speed may not always be readily
obtained for all species, and an alternative is to use a data-driven threshold such
as the 90™ percentile of speeds from the track. Once a speed threshold S has been
chosen, positions with incoming and outgoing speeds > S may be identified as
spikes and removed.

Some species can realistically achieve speeds > S in fast transit segments when
assisted by their environment, such as birds with tailwinds, and a simple filter on
incoming and outgoing speeds would exclude this valid data. To avoid removing
valid, fast transit segments while still excluding spikes, the speed filter can be
combined with a filter on the turning angles of each position (see Calenge et al.
2009; Bjgrneraas et al. 2010). This combined filter assumes that positions in high-
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throughput tracking with both high speeds and large turning angles are likely to
be due to location errors, since most species are unable to turn sharply at very
high speed. Users can then remove those positions whose incoming and outgoing
speeds are both > S, and where 6 > A (sharp, high-speed turns), where 6 is the
turning angle, and A is the turning angle threshold. Many other track metrics may
be used to identify implausible movement and to filter data (Seidel et al. 2018). At
this early stage in pre-processing, track metrics should be considered provisional
— itis not until after smoothing and potentially resampling to a regular interval
(see below), that calculated track metrics should be used for ecological inference.

Sometimes, entire subsets of the track may be affected by the same large-scale
location error. For instance, multiple consecutive positions may be roughly trans-
lated (geometrically) away from the real track and form ‘prolonged spikes’, or
‘reflections’ (see Fig. 2.3.b). These cannot be corrected by targeted removal of
individual positions, as in Bjgrneraas et al.’s approach (2010), since there are no
positions with both high incoming and outgoing speeds, as well as sharp turn-
ing angles, that characterise spikes. Since filtering individual positions will not
suffice, algorithms to correct such errors must take a track-level view, and target
the displaced sequence overall. Track-subset algorithms are likely to be system-
specific, and may be challenging to conceptualise or implement. In the case of
prolonged spikes, one relatively simple solution is identifying the bounds of dis-
placed segments, and removing positions between them. This identification can
be based on relatively simple rules — for example, the beginning of a prolonged
spike could be identified as a position with a high incoming speed, but a low
outgoing speed, while the end of such a spike would have a low incoming, but
a high outgoing speed. We have implemented an illustrative example of such
an algorithm in the form of track-subset filtering for prolonged spikes using the
atlastools function atl_remove_reflections (see the atlastools documentation for
details on the algorithm). Users are strongly encouraged to visualise their data
before and after applying such algorithms; as these methods are not foolproof,
and data that are heavily distorted by errors affecting entire track-subsets should
be used with care when making further inferences.

Smoothing and Thinning Data

Median Smoothing

After filtering out large location errors, the track may still look ‘spiky’ at small
scales, and this is due to smaller location errors that are especially noticeable
when the individual is stationary or moving slowly (Noonan et al. 2019). These
smaller errors are challenging to remove since their attributes (such as speed and
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turning angles) are within the expected range of movement behaviour for the
study species. The large data volumes of high-throughput tracking allow users
to resolve this problem by smoothing the positions. The most basic ‘smooths’
work by approximating the value of an observation based on neighbouring values.
For a one-dimensional series of observations, the neighbouring values are the K
observations centred on each index value i. Therange i — (K - 1)/2...i + (K — 1)/2
is referred to as the moving window as it shifts with i, and K is the moving window
size. A common smooth is nearest neighbour averaging, in which the value of an
observation x; is the average of the moving window K. The median smooth is a
variant of nearest neighbour averaging which uses the median rather than the
mean, and is more robust to outliers (Tukey 1977). The median smoothed value
of the X coordinate, for instance, is

Xi = Median(Xi_(K_l)/z Xi+(K—l)/2)'

Users can apply a median smooth with an appropriate K independently to the
X and Y coordinates of a movement track to smooth it (see Fig. 2.4.a — €). The
median smooth is robust to even very large temporal and spatial gaps, and does
not interpolate between positions when data are missing. Thus it is not necessary
to split the data into segments separated by periods of missing observations when
applying the filter (see Fig. 2.4).

Some data sources, such as GPS, provide tracks that have already been smoothed
in quite sophisticated ways, such as with a Kalman filter, making a median
smooth unnecessary (Kaplan and Hegarty 2005). Furthermore, smoothing is
not a panacea for data quality issues, and has its drawbacks. Smoothing does
not change the number of observations, but does decouple the coordinates from
some of their attributes. For instance, smoothing breaks the relationship be-
tween a coordinate and the location error estimate around it (VARX, VARY, and
SD in ATLAS systems). Since the X and Y coordinates are smoothed indepen-
dently, the smoothed coordinates of an observation will likely differ from all the
coordinates used to compute the smoothed value. Any position covariates (e.g.
environmental values such as landcover or elevation) obtained before smoothing
should be replaced with the covariates obtained at the smoothed coordinates.
Similarly, instantaneous track metrics, such as speed and turning angle, should
also be updated at this stage to reflect the smoothed coordinates. Furthermore,
the location error estimate around each coordinate, and around the localisation
overall, become invalid and should be ignored. This makes subsequent filtering
on measures of data quality unreliable, and smoothed data are unsuitable for use
with methods that model location uncertainty (Fleming et al. 2014; Calabrese
et al. 2016; Noonan et al. 2019; Fleming et al. 2020). Thus, when applying loca-
tion error modelling methods, users should ensure that the error measure bears
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a mechanistic relationship with the location estimate (see Noonan et al. 2019;
Fleming et al. 2020: for more details). Additionally, excessively large K may result
in aloss in detail of the individual’s small-scale movement (compare Fig. 2.4.e
with 2.4.a). Users must themselves judge how best to balance large-scale and
small-scale accuracy, and choose K accordingly. Median smoothing is provided
by the atlastools function atl_median_smooth, with the only option being the
moving window size, which must be an odd integer.

(a) (b)
Filtered data & true path Median smooth; K = 21

(e)

(d) (c)
Median smooth; K= 11 Median smooth; K =5

Figure 2.4: Median smoothing position coordinates reduces small-scale location error in
tracking data. The goal of this step is to approximate the simulated canonical track (black line,
(a)), given positions with small-scale error that remains after filtering in previous steps (green
points). (b) Median smoothing the position coordinates (green points, in (a)) over a moving
window (K) of 21 positions gives a good approximation (blue line) of the canonical track, and
is a significant improvement on the unsmoothed track (grey lines and points). While K should
usually be at least two orders of magnitude less than the number of positions in the track, users are
cautioned that there is no correct K, and they must subjectively choose a K which most usefully
trades small-scale details of the track for large-scale accuracy. Here, smoothing with a K of (¢) 5
(dark grey line) and (d) 11 (blue line), leads to a jagged track, compared to the true path in (a), and
the distance moved by the animal would be overestimated. (e) Using extremely large values of K
(101) may lead to a loss of both large and small scale detail (red line). Across panels, grey lines
and points show the track without smoothing.



PRE-PROCESSING ANIMAL TRACKING DATA

Thinning Movement Tracks

Most data at this stage are technically ‘clean’, yet the volume alone may pose
challenges for lower-specification or older hardware and software if these are
not optimised for efficient computation. Thinning data i.e., reducing their vol-
ume, need not compromise researchers’ ability to answer ecological questions;
for instance, proximity-based social interactions lasting 1 — 2 minutes would
still be detected on thinning from a sampling interval of 1 second to 1 minute
(Aspillaga et al. 2021a). Thinning data also does not imply that efforts to collect
high-throughput movement data are ‘wasted’, as rich movement datasets enable
more detailed and more accurate representation of the true track, as elaborated
above. Indeed, some analyses require that temporal auto-correlation in the data
be broken by subsampling the data to a lower resolution; these include traditional
kernel density estimators for animal home-range, as well as resource selection
functions (Manly et al. 2007; Fleming et al. 2014; Dupke et al. 2017). Furthermore,
a number of powerful methods in movement ecology, including Hidden Markov
Models and integrated Step-Selection Analysis recommend uniform sampling
intervals (Langrock et al. 2012; Avgar et al. 2016; Michelot et al. 2016). Finally,
subsampling data may be an important strategy in exploratory data analysis; for
instance, it allows researchers to determine whether computationally intensive
methods, such as distance and speed estimates from continuous time movement
model fitting, are required for their data, or whether the movement metrics sta-
bilise at a certain time scale (Noonan et al. 2019). Two plausible approaches here
are subsampling and aggregation, and both approaches begin with identifying
time-interval groups (e.g. of 1 minute). Subsampling picks one position from each
time-interval group while aggregation involves computing the mean or median of
all system-generated attributes for positions within a time-interval group. Here
again, users should repeat the extraction of any environmental covariates for the
thinned data, and may wish to obtain the mean values in a radius aroung the
locations, rather than point estimates alone. Both approaches yield one position
per time-interval group (Fig. 2.5.a). Categorical variables, such as the habitat type
associated with each position, can be aggregated using a suitable measure such as
the mode. We caution users that thinning causes an extensive loss of small-scale
detail in the data, and should be used carefully.

Both aggregation and subsampling have their relative advantages. The ag-
gregation method is less sensitive to selecting point outliers by chance than
subsampling. However, to account for location error with methods such as state-
space models (Jonsen et al. 2003; 2005; Johnson et al. 2008) or continuous time
movement models (Fleming et al. 2014; Calabrese et al. 2016; Gurarie et al. 2017;
Noonan et al. 2019; Fleming et al. 2020), correctly propagating the location error is
important, and subsampling directly propagates these errors without further pro-
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cessing. In reverse-GPS systems systems the location error is calculated from the
variance-covariance matrix of the coordinates of candidate positions considered
by the location solver (Weiser et al. 2016); this is equivalent to GPS systems’ HDOP
(Ranacher et al. 2016). In the aggregation method, the location error around each
coordinate provided by either GPS or reverse-GPS systems can be propagated —
assuming the errors are normally distributed — to the averaged position as the
sum of errors divided by the square of the number of observations contributing
to each average (N):

i=N
Var(X),gg = (Z Var(X),-) IN?
i=1

Similarly, the overall location error estimate for the average of N positions in a
time-interval can be calculated by treating it as a variance. For instance, the AT-
LAS error and GPS error measures (SD and HDOP, respectively) can be aggregated
as:

i=N
SD,4; 0r HDOP,,, = \j (Z SD? or HDOP?) IN?
i=1

Users may question why thinning, which can obtain consensus positions over
an interval and also reduce data-volumes should not be used directly on the raw
data. We caution that thinning prior to excluding unrealistic movement and
smoothing (Fig 5.b) can lead to preserving artefacts in the data, and estimates
of essential metrics — such as straight-line displacement (and hence, speed) —
that are substantially different from the true value (see Fig. 2.5.c; Noonan et al.
2019). In our example, the data with errors would have to be thinned to ™
of its volume for the median speed of the thinned data to be comparable with
the overall median speed — this is an undesirable step if the aim is fine-scale
tracking. Additionally, the optimal level of thinning can be difficult to determine,
especially if there is wide individual variation in movement behaviour, and the
mis-estimation of track metrics from inappropriately thinned data could have
consequences for the implementation of subsequent filters based on detecting
unrealistic movement. However, thinning before data-cleaning has its place as a
useful step before exploratory visualisation of the movement track, since reduced
data-volumes are easier to handle for plotting software. Thinning is implemented
in atlastools using the atl_thin_data function, with either aggregation or sub-
sampling (specified by the method argument) over an interval using the interval
argument. Grouping variable names (such as animal identity) may be passed as a
character vector to the id_columns argument.
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System-Specific Pre-processing Tools

When researchers’ pre-processing requirements exceed the functionalities of
existing tools, they might have to conceptualise and implement their own meth-
ods. For instance, an important and common analysis with animal tracking data
is to link space use with environmental covariates. This is difficult even with
smoothed and thinned high-throughput data, as these may be too large for sta-
tistical packages, or have strong autocorrelation. Users aiming for such analyses
can benefit from segmenting and clustering the data into spatio-temporally inde-
pendent bouts of different behavioural modes (Patin et al. 2020). Treating these
as the unit of observation also conveniently sidesteps pseudo-replication and re-
duces computational requirements. While numerous methods of segmenting and
clustering data are in use, they may not be scalable to very large or gappy datasets
(Langrock et al. 2012; Michelot et al. 2016; Patin et al. 2020). As an alternative, a
first-principles approach that segments data based on the movement capacity (top
speed, etc.) of tracked animals, could provide a fast, yet useful way to cluster data.
Here, as a working example that may be suitable for some systems, we present a
simple segmentation-clustering algorithm to make ‘residence patches’, identified
as bouts of relatively stationary behaviour (Barraquand and Benhamou 2008;
Bijleveld et al. 2016; Oudman et al. 2018). Details of the implementation may
be found in the package code, and examples are provided in the Supplementary
Material.

Conceptualising a Simple Segmentation-Clustering Algorithm: The
Residence-Patch Example

Before implementing the algorithm, users should identify positions where the
animal is relatively stationary, for instance on its speed or first-passage time (Bar-
raquand and Benhamou 2008; Bracis et al. 2018). Our suggested algorithm begins
by assessing whether consecutive stationary positions are spatio-temporally in-
dependent, and clusters them together into a residence patch if they are not.
This clustering could be based on a simple proximity threshold — points farther
apart than some threshold distance are likely to represent two different residence
patches. In cases where animals visit multiple sites in sequence (such as traplin-
ing: Thomson et al. 1997), and which researchers might wish to consider as a
single residence patch, a larger-scale distance threshold can help cluster nearby
residence patches together, and this can also be applied to cluster together patches
artificially separated due to missing data. Our algorithm separates two observa-
tions at a similar location, but at two very different time points, by comparing the
intervening time-lag against a time-difference threshold, which can also apply to
patches that would otherwise be clustered by the large-scale distance threshold.
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Users are encouraged to base these thresholds on the movement habits of their
study species (see the Worked Out Example).

We have implemented a working example of the simple clustering concept pre-
sented here as the function atl_res_patch (see Fig. 2.6.b), which requires three pa-
rameters: (i) the distance threshold between positions (called buffer_size), (ii) the
large-scale distance threshold between clusters of positions (called lim_spat_in-
dep), and (iii) the time-difference threshold between clusters (called lim_time_in-
dep). Clusters formed of fewer than a minimum number of positions can be
excluded. Our algorithm performs well when movement modes are clearly sepa-
rated, and is capable of correctly separating positions that are close together in
space and time, but which comprise different behavioural sequences (see Fig. 2.6).
While the algorithm may not cover all possible use-cases and study species, we
provide it here as an example of a user-built exploratory method for animal track-
ing data. It is important to systematically test such custom-made algorithms, to
ensure reproducibility and reliability (Wickham 2015; Marwick et al. 2018). Sim-
ple examples of such tests for the residence patch method and other functions in
atlastools may be found in the tests/ directory in the associated Github repository.

A Real-World Test of User-Built Pre-Processing Tools

We applied the pre-processing pipeline using atlastools functions described
above to an ATLAS dataset to verify that the residence patch method could cor-
rectly identify known stopping points (see Fig. 2.7). We collected the data (n =
50,816) on foot and by boat, with a hand-held WATLAS tag (sampling interval
= 1s) around the island of Griend (53.25°N, 5.25°E) in August 2020 (WATLAS:
Wadden Sea ATLAS system Bijleveld et al. 2021; Beardsworth et al. In press). Since
the data were intended to test the accuracy of the WATLAS system, we were able
to log stops in the track as waypoints using a handheld GPS device, and manually
annotate the WATLAS data with the timestamp of each waypoint (Garmin Dakota
10; see Beardsworth et al. In press). We estimated the real duration of each stop
as the time difference between the first and last position recorded within 50m of
each waypoint, within a 10 minute window before and after the waypoint times-
tamp (to avoid biased durations from revisits). Stops had a median duration of
10.28 minutes (range: 1.75 minutes - 20 minutes; see Supplementary Material).
We cleaned the data before constructing residence patches by (i) removing a single
outlier (> 15 km away), removing unrealistic movement (= 15 m/s), smoothing the
data (K = 5), and (iv) thinning the data by subsampling over a 30 second interval.
The cleaning steps retained 37,324 positions (74.45%), while thinning reduced
these to 1,803 positions (4.8% positions of the smoothed track). Details and code
are provided in the Supplementary Material (see Validating the Residence Patch
Method with Calibration Data).
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Figure 2.6: Movement tracks can be classified into residence patches, while leaving out
the transit between them. (a) A simulated animal movement track from Gupte et al. 2021,
where an agent uses local cues to make movement decisions to maximise intake. The agent tends
to stop (solid circles) on high-productivity areas of the landscape, as these are more likely to
generate prey-items. Transit points between stationary phases are shown as crosses. (b) Our
simple, first-principles based clustering algorithm classifies the track into five residence patches.
Some transit points are erroneously classified as being part of a residence patch (top, yellow),
illustrating why is it important to remove such data before applying this method. Simultaneously,
some points where the animal is not stationary for long are not picked up by the method. While the
large purple patch (bottom) is composed almost entirely of consecutive positions, the subsequent
patches are composed of multiple parts. This is because our method was designed to be robust
to missing data from empirical tracks; the spatial and temporal limits of splitting and lumping
can be controlled using the arguments passed to atl_res_patch, and can be adjusted to fit the
study system. Users are cautioned that there are no ‘correct’ options, and the best guide is the
behavioural biology of the tracked individual.

We began by visualising the data to check for location errors, and found a single
outlier position approx. 15km away from the study area (Fig. 2.7.a). This outlier
was removed by filtering data by the X coordinate bounds using the function
atl_filter_bounds; X coordinate bounds < 645,000 in the UTM 31N coordinate
reference system were removed (n = 1; remaining positions = 50,815). We then



PRE-PROCESSING ANIMAL TRACKING DATA

calculated the incoming and outgoing speed, as well as the turning angle at each
position using the functions atl_get_speed and atl_turning_angle respectively, as
a precursor to targeting large-scale location errors in the form of point outliers.
We used the function atl_filter_covariates to remove positions with incoming and
outgoing speeds > the speed threshold of 15 m/s (n = 13,491, 26.5%; remaining
positions = 37,324, 73.5%; Fig. 2.7.b). This speed threshold was chosen as 5
m/s faster than the known boat speed, 10 m/s. Finally, we targeted small-scale
location errors by applying a median smooth with a moving window size K = 5
using the function atl_median_smooth (Fig. 2.7.c). This step does not reduce the
number of positions.

We identified stationary positions as those where the median smoothed speed
(K = 5) was < 2m/s, as people or a boat moving any faster are likely to be in transit.
We clustered these positions into residence patches with a buffer radius of Sm, spa-
tial independence limit of 50m, temporal independence limit of 5 minutes, and a
minimum of 3 positions per patch. Inferred residence patches corresponded well
to the locations of stops (see Fig. 2.7.c). However, the residence patch algorithm
detected seven more stops (n = 28) than there were waypoints (n waypoints = 21).
One of these was the field station on Griend where the tag was stored between trips
(red triangle, Fig. 2.7.c), while another patch was formed of positions recorded
while waiting for the boat; such unintended stops, not recorded as waypoints,
likely accounted for the remaining five ‘extra’ residence patches. Our analysis
also did not detect two stops of 105 and 563 seconds (1.75 and 9.4 minutes) since
they were data poor and were cleaned away during pre-processing (n positions =
6, 15), highlighting that the quality of the raw data (as in the rest of the track) is
still a limiting factor on the inferences that are possible after pre-processing. To
determine whether the residence patch method correctly identified the duration
of detected stops in the calibration track, we first extracted the patch attributes
using the function atl_patch_summary. We then matched the patches to the way-
points by their median coordinates (rounded to 100 metres). We assigned the
inferred duration of the stop as the duration of the spatially matched residence
patch. We compared the inferred duration with the real duration using a linear
model with the inferred duration as the only predictor of the real duration. In-
ferred duration was a good predictor of the real duration of a stop (linear model
estimate = 1.021, t-value = 12.965, p < 0.0001, R? = 0.908; see Supplementary
Material Fig. 2.1.7). This translates to a 2% underestimation of the stop duration
at a tracking interval of 30 seconds. Finally, any classification algorithm will
present users with a trade-off between over-sensitivity (erroneously finding stops
where there were none), and under-sensitivity (missing stops where they are not
local or long enough) — users should balance between these based on the broader
questions sought to be answered.
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Figure 2.7: Pre-processing steps for WATLAS calibration data showing filtering on speed,
median smoothing and thinning by aggregation, and making residence patches. (a) Posi-
tions with incoming and outgoing speed > 15 m/s are removed (grey crosses = removed, green
points = retained). (b) Raw data (grey crosses), median smoothed positions (green circles; moving
window K = 5), and the smoothed track thinned by aggregation to a 30 second interval (purple
squares). Square size corresponds to the number of positions used to calculate the averaged
position during thinning. (c) Clustering thinned data into residence patches (green polygons)
yields robust estimates of the location of known stops (purple triangles). The algorithm identified
all areas with prolonged residence, including those which we had not intended to be recorded,
such as stops at the field station (n = 12; red triangle). Our analysis could not find two stops of 105
and 563 seconds duration (6 and 15 fixes, respectively), since these were lost in the data thinning
step; one of these is shown here (purple triangle without green polygon).

A Worked-Out Example on Animal Tracking Data

We present a fully worked-out example of our pre-processing pipeline and
residence patch method using movement data from three Egyptian fruit bats
(Rousettus aegyptiacus) tracked using the ATLAS system in the Hula Valley, Is-
rael (33.1°N, 35.6°E) (Toledo et al. 2020; Lourie et al. 2021). Code and data can
be found in the Supplementary Material and Zenodo repository (see Processing
Egyptian Fruit Bat Tracks). Data selected for this example were collected over
three nights (5™ - 7" May, 2018), with an average of 13,370 positions (SD = 2,173;
range = 11,195 - 15,542; interval = 8 seconds) per individual. Plotting the tracks
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revealed potential location errors (see Fig. 2.1, see also Supplementary Material
Fig.2.1), which we filtered out by removing observations with ATLAS SD > 20 (see
Supplementary Material Section 2.5), as well as removing observations calculated
using fewer than four base stations, altogether trimming 22% of the raw data
(mean positions remaining = 10,447 per individual). Then, we removed unrealis-
tic movement represented by positions with incoming and outgoing speeds > 20
m/s that exceed the maximum flight speed recorded in this species (15 m/s; Tsoar
etal. 2011), leaving 10,337 positions per individual on average (98% of previous
step). We median smoothed the data with a moving window K size = 5, and no
observations were lost.

We aimed to study bats’ night-time foraging on fruit trees by quantifying the
duration of bats’ residence patches. We began the construction of residence
patches by finding the residence time within 50 metres of each position; this is
the maximal radius of a ‘cloud of points’ around fruit trees (Bracis et al. 2018).
Foraging bats repeatedly traverse the same routes (Tsoar et al. 2011; Toledo et al.
2020; Lourie et al. 2021) and this could artificially inflate the residence time
of positions along these routes. To avoid confusing revisits with residence, we
limited the summation of residence times at each position to the period until the
first departure of 5 minutes or more. Thus, two nearby locations (= 50m apart)
each visited for one minute at a time, but separated by an interval of some hours
would not be clustered together as a residence patch. To focus on bats’ night-time
foraging behaviour, we also excluded positions during the day (S AM - 8 PM), and
at or near the roost-cave (see Fig. 2.8a) to focus on night-time foraging behaviour;
22,910 of 31,012 positions remained (73.9%). Since bats departed and returned
to their roost at different times each night, we also excluded locations with a resi-
dence time > 200 minutes (approx. 3.3 hours), as this was more likely to represent
daytime roosting than nighttime foraging; of 31,012 smoothed positions, 18,677
remained (60%). From these positions, we calculated that between leaving the
roost to forage, and returning, bats had a mean residence time at each position
of 95.64 minutes (SD = 119.23) — this value is still likely to be biased by some
positions at the roost.

To determine the true duration of foraging, we opted for a first-principles ap-
proach and first selected only locations with a residence time > 5 minutes, rea-
soning that a flying animal stopping for > 5 minutes at a location should plausibly
indicate resource use or another interesting localised behaviour. This step re-
tained 5,736 positions per bat on average (17,208 total), or 72.4% of the nighttime
positions. We then constructed residence patches with a buffer distance of 25m, a
spatial independence limit of 100m, a temporal independence limit of 30 minutes,
and rejected patches with fewer than three positions. These values are meant as
examples; users should determine the sensitivity of their results to parameter
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choices. Bats spent 56.95 minutes at foraging sites (SD = 62.20), and were sta-
tionary in particular fruit trees and roosting trees during 83.8% of their foraging
time (Fig. 2.8). Although all three bats roosted at the same cave during the day,
and all their tracks are within the typical foraging area of bats roosting in this
cave (Lourie et al. 2021), they used distinct foraging sites across the area at night
(Fig. 2.8.a). The lack of overlap among individuals in tree use, obtained with the
residence patch algorithm, shows that although co-roosting bats share the same
cave-specific foraging area (Lourie et al. 2021), they often forage on different trees.
Contrasting the actual movement path with the linear path between residence
patches can help reveal details of how animal cognition affects space use (Toledo
et al. 2020). Bats tended to show prolonged residence near known food sources
(fruit trees), but also where no fruit trees were recorded (Fig. 2.8.b, 2.8.c), in line
with previous evidence for their use of non-fruiting trees to rest, to handle and
digest food, and presumably for social interactions (Tsoar et al. 2011).

Future Perspectives on Pre-processing Tracking Data

Recent technical advances in wildlife tracking have already yielded exciting
new insights from massive high-resolution movement datasets (Tsoar et al. 2011;
Strandburg-Peshkin et al. 2015; Harel et al. 2016; Baktoft et al. 2017; Harel and
Nathan 2018; Oudman et al. 2018; Baktoft et al. 2019; Papageorgiou et al. 2019;
Corl et al. 2020; Toledo et al. 2020; Aspillaga et al. 2021a,b; Beardsworth et al.
2021a,b; Lourie et al. 2021; Vilket al. 2021), and high-throughput animal tracking
is expected to become increasingly more common in the near future. Tackling the
very large datasets that high-throughput tracking generates requires a different
approach from that used for traditionally smaller volumes of data. We foresee
that movement ecologists will have to adopt ever more practices from fields ac-
customed to dealing with ‘big data’, and that the field will become increasingly
computational (Peng 2011).

Researchers have long used some of these approaches ad hoc, such as ex-
ploratory data analysis on small subsets before applying methods to the full data,
using efficient tools, and basic batch-processing. Yet formally prescribing these
steps can help practitioners avoid pitfalls and implement techniques that make
their analyses quicker and more reliable. Standardised principles, implemented
a basic pipeline, for approaching data cleaning promote reproducibility across
studies, making comparative inferences more robust. While massive datasets
make reliance on standardised pipelines necessary, the output of such pipeline
should periodically manually double-checked to ensure ‘realistic’ output. The
open-source R package atlastools serves as a starting point for methodological
collaboration among movement ecologists, and as a simple working example on
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Figure 2.8: Synthesising animal tracks into residence patches can reveal movement in
relation to landscape features, prior exploration, and other individuals. (a) Linear ap-
proximations of the paths (coloured straight lines) between residence patches (circles) of three
Egyptian fruit bats (Rousettus aegyptiacus), tracked over three nights in the Hula Valley, Israel.
Real bat tracks are are shown as thin lines below the linear approximations, and colours show
bat identity. The grey hexagon represents the roost-cave at Gar Hershom. Black points represent
known fruit trees. Background is shaded by elevation at 30 metre resolution. (b) Spatial represen-
tations of an individual bat’s residence patches (green polygons) can be used to study site-fidelity
by examining overlaps between patches, or to study resource selection by inspecting overlaps
with known resources such as fruit trees (black circles). In addition, the linear approximation of
movement between patches (straight green lines) can be contrasted with the estimated real path
between patches (irregular green lines), for instance, to determine the efficiency of movement
between residence patches. (¢) Fine-scale tracks (thin coloured lines), large-scale movement
(thick lines), residence patch polygons, and fruit tree locations show how high-throughput data
can be used to study movement across scales. Patches and lines are coloured by bat identity.

which researchers may wish to model their own tools. Efficient location error
modelling approaches (Fleming et al. 2020; Aspillaga et al. 2021b) may eventually
make data-cleaning optional. Yet cleaning tracking data even partially before
modelling location error is faster than error-modelling on the full data, and the
removal of large location errors may improve model fits. Thus we see our pipeline
as complementary to these approaches (Fleming et al. 2014; Fleming et al. 2020).
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Finally, we recognise that the diversity and complexity of animal movement
and data collection techniques often requires system-specific, even bespoke, pre-
processing solutions. Though the principles outlined here are readily generalised
to numerous data sources (including terrestrial radio-based reverse-GPS: e.g.
Toledo et al. 2020, and marine acoustic reverse-GPS: e.g. Aspillaga et al. 2021b;
high-resolution GPS such as Strandburg-Peshkin et al. 2015, and video-tracking:
Rathore et al. 2020), users’ requirements will eventually exceed the particular
tools we provide. For instance, relational databases are the standard for storing
very large datasets, and extending pre-processing pipelines to deal with vari-
ous data sources is relatively simple, as we show in our Supplementary Material.
We see the diversity of animal tracking datasets and studies as an incentive for
more users to be involved in developing methods for their systems. We offer our
approach to large tracking datasets, and our pipeline and package as a founda-
tion for system-specific tools in the belief that simple, robust concepts are key
to methods development that balances system-specificity and broad applicability.

Supplementary Information
for Chapter 2

The supplementary material for this chapter is a worked out, step-by-step
guide to using the atlastools package to clean data as described in preceding
sections. Being primarily a tutorial for practitioners — and quite lengthy — it
is not provided here, but may be found online as Supporting Information pub-
lished along with the manuscript, Gupte et al. (2022b), “A Guide to Pre-Processing
High-Throughput Animal Tracking Data,” at: https://besjournals.onlinelibrary.wi-
ley.com/doi/10.1111/1365-2656.13610.
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Interlude A

Mapping Animal MovementinR

Pratik R. Gupte

MAPPING AS EXPLORATORY DATA ANALYSIS Mappinganimal movements
is a key component of exploratory data analysis. It is important to ‘join the
dots’ of animal positions. Large tracking datasets can contain errors that
are only evident to researchers when they look at an approximation of the
animal’s path and ask, “Does the animal move this way?” This map shows
umps’: long, linear segments between points, indicating missing data for
some periods.

Mapping can also reveal interesting behaviours that can only be observed
after significant effort in the field. The ‘looping’ behaviour of AM253 to
water sources is the focus of this map. Seeing this looping behaviour al-
lowed us to focus our study on elephant movements between visits to water
sources.

MAPPING AS ART Growing up in early 2000s India, I read hard copies of Na-
tional Geographic Magazine, which has long had fantastic graphics. Where
the Animals Go' was a source of inspiration as well. I built up the image in
layers, used colours that don’t clash, and highlighted the phenomenon of
interest. These approaches chime with the ‘grammar of graphics’ approach
of ggplot, which I used to make this map.

MAPPING IN R R’s great advantage over other languages is visualisaton, specif-
ically the popular ggplot package. ggplot’s emergence as a mainstay of
spatial visualisation is due to its geom_sf function, which can handle sf
spatial objects.

One of ggplot’s advantages is its many extensions. Here, I used the ggspatial
and ggtext extension packages to add the scale bars and north arrow, and
to add the text box, respectively.

Plotting rasters is not straightforward in ggplot. There are two main op-
tions: the stars package and its associated geom_stars, or converting a

1 Cheshire, J. and Uberti, O. (2017), Where the Animals Go: Tracking Wildlife with Technology in 50
Maps and Graphics (W. W. Norton), 174 pp.
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raster dataset into a dataframe with regular coordinate intervals and using
geom_tile.

Here, I chose the second approach because I'm an infrequent stars user;
since making the map I've tried geom_stars which works just as well, and is
very convenient.

REPRODUCIBILITY IN R Iadopted a relatively relaxed understanding of re-
producibility: given the data, the code would be reproducible if it could
produce the map I had entered for this contest. To do this, I set up a contin-
uous integration pipeline using Github Actions (GHA).

Using the usethis package, I created a ‘DESCRIPTION’ file, which is usu-
ally reserved for packages. This file tricks GHA into reading its contents,
especially the dependencies, i.e., the R packages required by the project.

GHA automatically reads the dependencies and installs them, as well as
the programs required by those dependencies. For instance, GDAL (the
Geospatial Data Abstraction Library) is key to nearly all spatial analyses,
and is installed as a requirement of the rgdal package, which is itself key to
sf and raster.

I used the R package renv to make sure that the packages (and the pack-
age versions) I used are available to the pipeline. renv creates a lockfile, a
registry of packages the current project uses, from which those packages
can be installed. Finally, to check whether the entire pipeline works, I
used bookdown to sequentially execute the series of Rmarkdown files. An
obvious alternative is rmarkdown.

GHA runs this pipeline and reports whether the code ran successfully, and if
not, where it failed (you can see these reports here). GHA runs the pipeline
on Linux, and Windows containers (Mac OS-x is also supported). This
means that though I use Linux, I'm pretty sure that this code works for
Windows users.

THE LIMITS OF REPRODUCIBILITY Reproducibility inevitably breaks down
at certain scales in an ecological study. For instance, it would be impossi-
ble to reproduce the primary data collection of the study, such as which
elephants were captured and fitted with transmitters. These data are taken
on faith from the original researchers, highlighting the role of trust in the
scientific community.

In ten years, code in R or another language may no longer be reproducible
due to software and hardware changes, as many researchers found in the
10-year reproducibility challenge. Finally, entire services might become



unavailable; for example, the raster processing using Google Earth Engine
is dependent on Google maintaining this service.

Researchers then, should be pragmatic about reproducibility. Who is it for
— the researchers themselves, the reviewers of their manuscript, their stu-
dents, their funders? To whom this effort is owed, and by whom, and how
the additional work required can be prevented from becoming a gatekeep-
ing mechanism?:3, are are issues that the ecology and evolution community
will have to address.

2 Finley, K. (2017), “Diversity in Open Source Is Even Worse Than in Tech Overall,” Wired.

3 Murphy, M. C. et al. (2020), “Open Science, Communal Culture, and Women’s Participation in
the Movement to Improve Science,” Proceedings of the National Academy of Sciences, 117/39:
24154-64.
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About This Map

This map and text is adapted from a submission to the Methods in Ecology
and Evolution blog, after my entry won the BES’ Mapping Animal Movements
Contest (2020 - 2021), in the reproducible “R Map” category. The map shows the
movement of 14 female savanna elephants Loxodonta africana tagged in Kruger
National Park, South Africa, with a focus on the elephant AM253. The study that
inspired this map was published as Thaker et al. (2019) “Fine-Scale Tracking of
Ambient Temperature and Movement Reveals Shuttling Behavior of Elephants to
Water.”

I coloured the temperature raster using the scico package’s ‘VikO’ palette. I
tried out a number of palettes from scico, pals (providing the Kovesi palettes),
RColorBrewer, and colorspace packages. I chose a diverging palette to show het-
erogeneity in the thermal landscape, but this approach is not to be recommended
for material that will be printed in grayscale.

Map text is set in two related typefaces designed by the Dutch type foundry
Bold Monday for IBM: Plex Serif — for text on the map — and Plex Sans — for text
in the box. While aiming to be text typefaces, I think both perform much better
as ‘display’ faces; Plex Serif especially so.
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What is a bird if not a dinosaur persevering?

- Vinny Thomas, comedian.

Abstract

The flight surfaces of bird wings require regular renewal through a process
called moult — shedding worn out feathers and growing fresh ones. Moult
presents birds with the dilemma of needing more resources for feather growth just
when their flight capacity is reduced due to feather loss, making them more vul-
nerable to predation. We combined mechanistic and experimental approaches to
present a first quantification of the direct effects of wing moult on the movement
and habitat selection of four non-migratory passerine species. We followed the
movement of moulting birds using a high-throughput tracking system. Taking a
viewshed ecology approach, we examined how birds used areas sheltered from
observation by potential predators. We found that species’ moult rate determined
whether they adjusted their movement to their wing condition. Among species
that adapted movement to moult rate, natural moult led to increased movement
between habitat patches, whereas artificial feather removal led to shorter between-
patch movements. Across moult rates, birds preferred lower visibility areas that
are more sheltered from visual predators. Our study revealed that birds’ fine-scale
adaptive movement decisions are intertwined with their evolved physiological
strategies, and they can adopt the spatial perspective of their predators at land-
scape scales, pre-emptively avoiding areas where they could be observed. Overall,
we show how combining experimental and tracking approaches with mechanis-
tic, biologically-grounded estimates of landscape attributes allows cross-species
comparisons of movement strategies in response to moult dynamics.
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Introduction

IRDS are unique in moving mostly by powered flight on feathered wings.
Feathers, unlike animal hair and claws, are dead proteinaceous structures,
which cannot be renewed continuously as they suffer wear and tear (Rayner
1988; Jenni and Winkler 1989). As feathers mature, wing condition and conse-
quently flight capacity gradually decreases (Lindstrom et al. 1994; Hedenstrom
and Sunada 1999; Hedenstrom 2003). Moult — the shedding of old, worn-out
feathers, and their replacement with freshly grown ones — is thus a key process
in avian ecology (Ginn and Melville 1983; Rayner 1988). During wing moult, as
one or more feathers are lost and new ones grow in their place, the flight surfaces
of bird wings become smaller. The reduction in flight surface area during moult
can be measured using a robust-cross species index of the size of the (temporary)
wing gap (Lind and Jakobsson 2001; Kiat et al. 2016). Wider gaps lead to larger
reductions in flight surface area, power output, and flight capacity and efficiency
in captive birds (Tucker 1991; Swaddle et al. 1996; Swaddle and Witter 1997; Lind
2001; Lind and Jakobsson 2001; Williams and Swaddle 2003; Bowlin et al. 2009).
In addition to these indirect costs, wing moult is among the most energetically
demanding phases of a bird’s annual cycle, as regrowing large flight feathers
requires substantial resources (Lindstrom et al. 1993; Newton 2009; Kiat and
Sapir 2017). Despite these mechanistic links between moult and movement, our
understanding of moult’s influence on birds’ movement strategies and habitat
selection is poor.

The direct influence of wing moult on the movement and habitat selection of
birds has primarily been examined in a few small-scale, disconnected studies
(Bell 1970; Haukioja 1971; Green and Summers 1975; Madsen and Mortensen
1987; Francis et al. 1991; Fox et al. 1998). Moving less, as some northerly species
of finches and buntings do (Bell 1970; Haukioja 1971; Green and Summers 1975;
Francis et al. 1991), could save energy required to regrow feathers. Avoiding
predation risk during moult by sheltering in vegetation and rough terrain (Bell
1970; Haukioja 1971; Green and Summers 1975; Francis et al. 1991), or near
water-bodies as geese and ducks do (Madsen and Mortensen 1987; Fox et al. 1998),
could also lead to reduced movement during moult. Moult often coincides with
migratory periods (Kiat et al. 2019), making it difficult to separate the effects of
migration-related energetic requirements (Alerstam and Lindstrém 1990; Wikel-
ski et al. 2003; Horvitz et al. 2014), such as preferences for high-quality resources
(Madsen and Mortensen 1987; Fox et al. 1998), from moult-related considerations
on habitat selection. Simultaneously, moult is influenced by bird physiology, with
large-bodied species molting faster (Jenni et al. 2020; Kiat and Izhaki 2021), and
also by birds’ evolved movement strategies, as wide-ranging and aerial foraging
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species (e.g., swifts and swallows) moult more slowly to maintain movement
capacity (Kiat et al. 2016).

The direct effects of moult could be robustly studied with a cross-species com-
parison of unrelated, non-migratory species that are not constrained by the short
time available for moult in northern temperate regions (Ginn and Melville 1983;
Jenni et al. 2020). Cross-species studies of movement and habitat selection in
molting birds could benefit from dramatic advances in the high-throughput po-
sition tracking of small species (Toledo et al. 2020; Nathan et al. 2022). Birds,
among other animals, can take the spatial perspective of visual predators, and
avoid risky, exposed areas in favour of sheltered ones (Hampton 1994; Emery
2000; Krams 2001; Davidson and Clayton 2016; Krams et al. 2020). Shelter is
often only proxied by correlated variables, such as vegetation growth (Pettorelli
et al. 2011). Adopting a mechanistic, viewshed ecology approach (Olsoy et al.
2015; Aben et al. 2018; 2021) in habitat selection analyses could directly account
for birds’ visibility to potential predators (Olsoy et al. 2015; Aben et al. 2018;
2021).

We explore the direct effects of wing moult on the movement of birds, focus-
ing on four sympatric, non-migratory species: barn swallows (Hirundo rustica),
white-spectacled bulbuls (Pycnonotus xanthopygos), house sparrows (Passer do-
mesticus), and clamorous reed-warblers (Acrocephalus stentoreus). Scoring the
moult-related wing gap size of naturally molting birds (Lind and Jakobsson 2001;
Kiat et al. 2016), we manipulated a subset of molting individuals by trimming
a number of flight feathers. We tracked birds during a 4-month period using
the high-throughput ATLAS system, which brings unprecedented temporal and
spatial resolution to small bird tracking (Toledo et al. 2014; Weiser et al. 2016;
Toledo et al. 2020; Nathan et al. 2022; Beardsworth et al. In press). We examined
(i) how the size of the moult-related wing gap affected bird movement, and (ii)
how the wing gap size influenced selection for more sheltered habitats. Overall,
we show how birds’ movement decisions, influenced by their immediate physio-
logical condition, scale up to affect their space use, and how individuals’ adaptive
behavioral strategies have feedbacks with their evolutionary ecology.

Examining the Movement of Moulting Birds

We studied bird moult and movement in the Hula Valley of northern Israel
(33.10°N, 35.60°E), which includes reconstructed wetlands and reedbeds as well
as agricultural areas (crops, plantations and fishponds; see Supplementary Infor-
mation).
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Bird Capture, Wing Moult Scoring and Experimental Manipulation

We captured 86 individuals of four species in 2016: 16 barn swallows, 19 white-
spectacled bulbuls, 35 house sparrows, and 16 clamorous reed-warblers, for which
we also measured the wing gap index. All individuals were trapped after breeding
was completed and before the molting season commenced, between June and
October 2016.

We described the state of each primary feather on a scale of O to 5 using the
primary score (PS) method (Ginn and Melville 1983). Both PS =0 and PS =5
indicate a fully mature feather, and hence no gap in the wing. A PS value between
1 and 4 indicates feathers in increasing stages of growth, with PS = 1 representing
alarge gap left by a recently molted feather. This method allows a cross-species
estimate of the size of the moult-related gap in the wing, and is also strongly
and negatively correlated with moult rate and duration (Rohwer et al. 2009). We
scored the wing gap size due to any single feather molting as the inverse value
of PS for each of the wing’s nine primary feathers (P1 — P9; counted outward)
such that when PS = 1, wing gap size = 4, and when PS = 2, wing gap size = 3, etc.
However, for PS = 0, wing gap size is also 0 because there is no gap in both the
PS = 0 and PS = 5 stages, as either an old, mature feather, or a new, freshly grown
feather is present. To compare moult-related wing gap sizes across individual
birds, we summed the wing gap size scores across all nine primary flight feathers,
for each individual, into a single wing gap index (Kiat et al. 2016). This index is
independent of the size of individual birds and their morphology, controls for the
stage of wing feather moult, and allows for reliable cross-species comparisons
(Bensch and Grahn 1993; Kiat et al. 2016).

We experimentally manipulated 29 individuals across species (bulbuls = 6,
sparrows = 14, reed-warblers = 2, swallows = 7), and removed one to three pri-
maries; the exact number was determined randomly for each bird. We varied
this number to produce variation in the possible effect of wing gap size, and the
manipulation was symmetrical, i.e., the same feather was removed in both wings.
Primaries were removed by cutting the feather near its base, in addition to the
primaries missing as part of natural moult; this procedure simulates an enlarge-
ment of the moult-related wing gap. Cutting the feather rather than tearing it out
from the base, which is still innervated (Jenni et al. 2020), avoided excess trauma
which could impact birds’ behaviour, and allowed us to examine the effect of only
the wing gap size on movement and habitat selection. For these experimentally
manipulated birds, we calculated the wing gap size after the procedure described
here. Bird capture and handling, the experimental manipulation procedure, and
tagging for position tracking (see below) were conducted under a permit from the
Israel Nature and Parks Authority (NPA permit 2016/41402) and from the ethics
committee of the Hebrew University of Jerusalem, Israel (NS-16-14801-2).
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Forecasting Daily Changes in the Wing Gap Size Index

The size of the moult-related wing gap decreases slowly and constantly as
feathers regrow, yet as a mature feather is shed, the wing gap size may also increase
in gradual jumps. Over our tracking period of about 7 days per individual (see
below), this is expected to represent small changes in the wing surface area, which
could further influence movement decisions. These changes in wing condition
should be accounted for when relating movement characteristics to wing gap
size. To do this, we calculated for each species the mean daily progress in the
moult score, based on a sample of individuals documented twice during the moult
process (bulbul = 0.45 + 0.15, n = 17; sparrow = 0.40 + 0.25, n = 10; reed-warbler
=0.69 + 0.34, n = 24; swallow = 0.34 + 0.18, n = 22). Then, we estimated for each
bird included in the study the expected daily change based on the measurement
we made at the time of tagging (see Supplementary Information).

Tracking Bird Movement Using ATLAS

We tracked the movement of individual birds using ATLAS (Advanced Track-
ing and Localization of Animals in real-life Systems), a state-of-the-art high-
throughput radio-telemetry system capable of tracking dozens of individuals
at intervals as low as 4 seconds (Toledo et al. 2014; Weiser et al. 2016; Toledo
et al. 2020; Nathan et al. 2022). We glued ATLAS tags (0.9 - 1.6 g, depending
on species) to birds’ dorsal feathers after capture, and then released them (tag
weights as percent of body mass: bulbuls = 3.85% + 0.21%; sparrows = 4.21 +
0.13; reed-warblers = 4.75% + 0.19%; swallows = 4.9% + 0.13%). Tags automat-
ically drop off as these feathers are molted. Each individual was tracked for an
average of 8.23 + 3.24 days (bulbul = 9.8 + 10.1 days; sparrow = 12.0 + 13.4 days;
reed-warbler = 5.9 + 2.1 days; swallow = 5.1 + 14.8 days). We collected 4.3 million
position estimates overall, with 7,276 positions per individual per day, for an
effective tracking interval of 5.05 + 1.85 positions per minute on average (bulbuls
=6.14 + 3.93; sparrows = 5.98 + 5.57; reed warblers = 5.80 + 3.16; swallows =
2.28 + 1.42). Since we were interested in exploring movement patterns, and these
species are diurnally active, we removed all nighttime positions, leading to an
approximate halving of the total dataset.

Processing Tracking Data

ATLAS conservatively filters out location estimates that are clearly wrong (e.g.,
too far from the study area), letting users inspect most location estimates, which
come with several measures of quality, and decide whether they want to retain the
estimates or not. For this study, we aggressively filtered out location estimates,
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removing estimates for which we had indications that ATLAS failed to find a high-
quality estimate (Gupte et al. 2022b) (see log_preprocessing.log in the analysis
code). We began data cleaning by removing locations near a so-called attractor po-
sition (at (257000.0,780000.0), Israeli grid; see file log_preprocessing.log); these
are locations for which the positioning system had defaulted to a (wrong) esti-
mate. We identified and removed other attractor positions by removing positions
sharing the exact same common coordinate pair. Since coordinates are resolved
down to double-precision, it is very unlikely for two location estimates to have
the same coordinate pair, and this rather indicates an error in location estimation.
Each individual’s track was pre-processed separately.

We first (i) filtered the data for large-scale errors by removing positions with
a system-generated positioning-error estimate (SD) > 20m, and then (ii) split
each individual’s tracking data by calendar date, removing days with < 500 po-
sitions. Finally, we (iii) filtered the data for unrealistic movements, removing
positions with both speeds > 20 m/s and a turning angle >10°. We deliberately
used larger thresholds than these species’ maximum speeds to avoid removing
valid, high-speed movements (Gupte et al. 2022b). Finally, we (iv) accounted for
small-scale errors — noise around the true positions — by applying a median
smooth with a moving window K = 7. After excluding night time data and all
other data filtering and smoothing, we analyzed 1.1 million locations from 86
individuals, keeping high per-minute sampling rate for all species (bulbuls = 4.85
+ 3.3, sparrows = 2.73 + 3.0, reed-warblers = 2.09 + 1.44, swallows = 2.07 + 1.14).
Compared with current technologies for tracking small birds (< 50g) — primarily
radio triangulation and geolocators, which have low temporal (a few fixes per
hour or day) and spatial resolution (error margins up to 200 km) (Bridge et al.
2013) — ATLAS data represent an unprecedented sampling rate, with GPS-level
accuracy (Beardsworth et al. In press).

Quantifying Large-scale Movements

We investigated the large-scale space-use of bulbuls, sparrows, and reed-warblers
by summarising their processed movement paths into daily sequences of ‘res-
idence patches’ using the atlastools package developed specifically with high-
throughput ATLAS tracking data in mind (Gupte et al. 2022b). The residence
patch algorithm uses simple distance and duration thresholds, chosen based on
the movement ecology of the tracked species, to efficiently and rapidly cluster-
segment individuals’ non-travelling positions (Gupte et al. 2022b). We applied
this algorithm to the date-specific tracks of each individual, considering consecu-
tive positions less than 25m and 30 minutes apart to be part of the same cluster.
We joined clusters (with at least 9 positions) less than 100m and 30 minutes apart
together for bulbuls and sparrows, and less than 25m and 30 minutes apart for
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reed warblers, which typically fly only short distances (Kiat et al. 2016). Doing so,
we obtained 4,373 residence patches overall and extracted environmental covari-
ates (NDVI and visibility index; see below) for the positions clustered into each
patch. We handled swallows differently, as these are highly aerial birds whose
movement is not easily clustered into residence patches. Instead, and because
the relatively higher-flying swallows are more accurately tracked by ATLAS, we
simply calculated the total distances moved along daily tracks from the cleaned,
processed data.

Visibility Analysis to Quantify Sheltered Habitats

Many animals can gauge the risk posed by predators by estimating a predator’s
field of view (‘spatial perspective taking’) (Emery 2000; Bruce et al. 2003; Davidson
and Clayton 2016), and select for sheltered locations outside of a predator’s view
(Hampton 1994; Krams 2001; Watve et al. 2002). To assess the field of view of
a hypothetical predator, and thus the estimated riskiness of the landscape, we
took a viewshed ecology approach to determine how visible an area was from
surrounding locations (Aben et al. 2018; 2021).

We first obtained a 50cm canopy height model (CHM) (Aben et al. 2021) of the
majority of our study area (courtesy of the Survey of Israel). For each cell of the
CHM, we calculated a visibility index, which is the proportion of surrounding
cells from which the focal cell is visible, given that lines of sight can be blocked by
intervening structures (also called cumulative viewshed analysis, or a ‘fearscape’)
(Olsoy et al. 2015). Open areas, such as agricultural fields or water bodies, are
likely to be visible from all directions and have a visibility score ~ 1.0. In contrast,
locations inside woodland or reedbeds are likely to be hidden from view, with a
lower visibility index (see Supplementary Information).

Importantly, the visibility index depends upon the hypothetical observer’s
height above surface level; observers higher up may be able to see locations that
are obstructed from a terrestrial viewpoint. We parameterised our visibility index
calculations based on the hunting flight altitude of a raptor that commonly preys
on small birds, the Eurasian sparrowhawk (Accipiter nisus). Sparrowhawks and
other bird-preying raptors hunt by surprising their prey via low-level flight, as
hovering or high-flying raptors are conspicuous and can be easily detected (Krams
2001; Krams et al. 2020). In line with experimental and observational work, we
assumed an observer height of 1.5m above surfaces (tree canopy, fields, or other)
(Seress et al. 2011; Krams et al. 2020), and an observer visual range of 50m. We
used the ‘Visibility Analysis’ plugin v1.2 for QGIS v3.20 to calculate visibility
scores over the study area (Cuckovic 2016).



WING MOULT & MOVEMENT

Drawing Alternative Residence Patches to Examine Habitat Selection

In our landscape, it is mostly wooded areas that offer shelter from observation
by aerial predators (see Supplementary Information). We examined the relative
importance of the provisioning effects of vegetation (proxied by NDVI) (Pettorelli
et al. 2011), and its sheltering effects (section F above), on birds’ movement deci-
sions at the patch scale. To do this, we combined our residence patch approach
for bulbuls, sparrows, and reed warblers with a step-selection approach (Thurfjell
et al. 2014; Avgar et al. 2016) using the amt package (Signer et al. 2019). While
barn swallows could potentially make use of sheltering vegetation by flying very
low (Warrick et al. 2016), we could not detect their altitude above the ground — a
key component of shelter — and so did not include them in this analysis.

We first converted each individual’s daily sequence of residence patches into
steps, with each patch i as the starting point, and the following patch i + 1 as
the end of the step. Then, for each such real step, we drew 9 alternative steps
that the individual could have taken from patch i, and considered the end coordi-
nates of these alternative steps to represent the median coordinates of a potential
residence patch. The distances of these movements were drawn from a gamma
distribution fitted to each individual’s movements between patches, and turning
angles were drawn from a Von Mises distributions fitted to the observed turning
angles (Signer et al. 2019). For each alternative patch with median coordinates
(Xare, Yair)» we drew 15 coordinate pairs from a normal distribution centred on
(Xait Yair)» With a standard deviation of 20 m.

To control for the resource-provisioning effect of vegetation, we also obtained
the normalised difference vegetation index (NDVI) as a metric of vegetation
growth (Pettorelli et al. 2011) across our study area, using Copernicus Sentinel-2
MultiSpectral Instrument, Level-1C data (10m resolution; June — October 2016).
We sampled the NDVI and visibility index at real and potential patch coordinates,
and calculated averages per patch. With between-patch movements as steps,
we performed species- and moult-status specific step-selection analysis (SSA) to
determine how these predictors affected habitat selection (Avgar et al. 2016: see
Supplementary Information). The time intervals between patches were not fixed,
but step lengths were not dependent on step duration, and so we implemented a
simple SSA.
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Figure 3.1: Naturally molting bulbuls and sparrows, but not reed-warblers, move farther
between residence patches during natural moult than following experimental feather
manipulation. White-spectacled bulbuls (Pycnonotus xanthopygos) and house sparrows (Passer
domesticus) moved 251% and 150% as far between areas of prolonged use (‘residence patches’)
when molting, compared to non-molting individuals (see text for statistics). However, when
bulbuls’ and sparrows’ wings were heavily compromised by experimental manipulation (wing
gap index > 12), both species made shorter movements between residence patches. In contrast,
clamorous reed-warblers (Acrocephalus stentoreus) did not show a significant difference in large-
scale movements with increasing wing gap index, possibly because they are already restricted to
small patches of reedbeds.

Effect of Wing Moult on Bird Movement and Habitat
Selection

Moult-related wing gap size

Of the four species we studied, bulbuls and sparrows are relatively wide-ranging
birds, reed-warblers are strongly range restricted to patchy reedbeds, and swal-
lows are very wide-ranging, largely aerial foragers. Bulbuls and sparrows moult
more slowly than reed-warblers, but more rapidly than swallows. Thus reed-
warblers have the largest moult-related wing gaps, swallows the smallest, while
bulbuls and sparrows are intermediate between them (wing gap index, mean + SD:
swallows = 4.3 + 0.95, bulbuls = 4.95 + 1.37, sparrows = 5.9 + 2.1, reed warblers =
9.5 + 1.38). All non-molting birds had a wing gap index score of zero.

Moult-related Wing Gap Size and Large-scale Movements

For bulbuls, sparrows, and reed-warblers, we quantified large-scale movements
as both the displacements between areas of prolonged residence, called ‘residence
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Figure 3.2: Patch-switching behaviour is affected by wing gap size in bulbuls and sparrows,
but not in reed-warblers. Bulbuls switched between areas of prolonged use (‘residence patches’)
more frequently when molting naturally than when not molting; however, bulbuls whose feathers
had been artificially cut (‘manipulated’) switched less frequently between patches. Molting
sparrows switched residence patches less frequently with increasing wing gap index; naturally
molting birds switched less than non-molting ones, and manipulated birds least of all. Reed-
warblers did not show a significant difference in patch switching with increasing wing gap index,
possibly because they are already restricted to small patches of reedbeds.

patches’ (Gupte et al. 2022b), as well as the frequency of these displacements.
Since swallows constantly fly while foraging, we chose to quantify their large-scale
movement by simply calculating the total distance moved, adjusting for the daily
duration of daytime tracking. We related total large-scale movements (controlling
for daily, daytime tracking duration) with wing gap size using generalised additive
models (GAM). We fit one GAM for bulbuls, sparrows, and reed-warblers (species
included as both fixed and random effect), and a separate GAM for swallows (see
Methods; see Supplementary Information for model specification).

Distance Between Residence Patches

We found that bulbuls and sparrows, but not reed-warblers, adjusted their
daytime large-scale movements between residence patches to their wing gap size
(Fig. 3.1; GAM t-value = 2.13, p = 0.034; Supplementary Information Table 3.1).
Compared with non-molting individuals (wing gap = 0), naturally molting bulbuls
with moderately large moult-related gaps (3 < wing gap < 10) actually moved 2.5
times as far per hour between residence patches (GAM estimate F =4.734, p=0.01;
distance between patches: non-molting = 54.11 m, molting = 135.89 m). Similarly,
naturally molting sparrows moved 1.5 times as far per hour between residence
patches (GAM estimate F = 11.58, p = 0.00002; distance between patches: non-

73



74

CHAPTER 3

molting = 208 m, molting = 307 m). This is consistent with the idea that wing
moult is an energetically demanding period that requires actively seeking out
high-quality food sources (Madsen and Mortensen 1987; Fox et al. 1998).

Reed-warblers and swallows, which represent very rapid and very slow moult
rates, respectively, showed no statistically significant change in large-scale move-
ment with increasing size of the moult-related wing gap (Fig. 3.1: reed-warblers).
Rapidly-molting reed-warblers moved similar distances between residence patches
when molting or non-molting (GAM estimate F = 0.055, p = 0.815; Fig. 3.1). This
is presumably because reed-warblers do not move between distant patches even
when not molting (mean distance between residence patches: non-molting =
27.20 m, molting = 29.09 m, manipulated = 8.49 m) (Kiat et al. 2016). Slow-
molting swallows also moved similar (large) distances per hour when they were
either non-molting, molting, or artificially manipulated (GAM estimate F = 0.129,
p = 0.723). Swallows’ slow moult rate likely represents an adaptation to their
aerial foraging habit, allowing them to maintain flight performance across moult
stages (non-molting = 3.48 + 1.36 km, molting = 3.36 + 1.17 km, manipulated =
3.64 + 1.96 km).

Effect of Artificial Manipulation

Our experimental manipulation involved removal of one to three primaries, in
addition to the primaries missing as part of natural moult (see Methods). Wing
gap index scores after artificial manipulation showed differences among species
corresponding to their natural moult rate, manipulated reed warblers had larger
wing gaps than manipulated swallows, bulbuls, or sparrows (swallows = 10.11 +
2.5, bulbuls = 13.5 + 2.35, sparrows = 12.56 + 3.5, reed-warblers = 17.8 + 1.1).
Bulbuls and sparrows whose flight feathers had been removed by manipulation
(12 < wing gap < 20) moved shorter distances than naturally molting birds (bul-
buls: 68% less, 43 m; sparrows: 16.7% less, 256 m). These observations are in line
with the direct effects of severely reduced flight capacity and allocating energy
reserves to feather regrowth rather than movement, and an indirect effect of
risk-avoidance during a vulnerable period.

Frequency of Patch Switching

We found that in addition to affecting the distance moved between residence
patches, the wing gap resulting from natural moult or manipulation also affected
the frequency of patch switching in bulbuls and sparrows, but not in reed-warblers
(Fig. 3.2). Naturally molting bulbuls moved more often between residence patches
than non-molting and artifically manipulated birds (GAM estimate F = 7.45, p
< 0.001; see also Supplementary Information Table 3.2). However, naturally
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Figure 3.3: Naturally molting bulbuls and reed-warblers, but not sparrows, use residence
patches for shorter durations than non-molting and artificially manipulated birds. Bul-
buls and reed-warblers use contiguous areas for shorter durations when molting, than either when
not molting or when some of their flight feathers have been removed by artificial manipulation.
However, sparrows did not show an effect of wing condition on their use of residence patches.
The visibility of a patch to low-flying predators reduced the duration for which it was used, but
patch vegetation productivity (NDVI) had no effect.

molting sparrows switched between residence patches as often as non-molting
birds, but artificially manipulated sparrows switched patches less frequently than
molting birds (GAM estimate F = 3.515, p = 0.024; Fig. 3.2). Reed-warblers did
not show a change in patch-switching frequency in relation to wing gap size (GAM
estimate F = 1.04, p = 0.31).

Moult-related Wing Gap size and Patch Occupancy

We examined whether the time that bird spent in residence patches was affected
by their wing gap size, with the expectation — following the results for movements
between patches — that molting birds would spend less time in patches than
non-molting and manipulated birds (see Supplementary Information for model
specification). This was indeed the case for both bulbuls and reed-warblers, for
which the mean patch duration for molting birds was only about half of that for
non-molting and manipulated birds (Fig. 3.3; GAM estimates: bulbuls, F = 18.86,
p <0.001; reed warblers, F = 12.854, p < 0.001). However, we found that sparrows
had similar patch durations across different wing gap sizes (GAM estimate F =
0.023, p = 0.878; Supplementary Information Table 3.3).

We expected two environmental attributes — vegetation productivity (NDVI),
and visibility to predators — to also affect patch durations. To quantify patch
visibility, we calculated the visibility index across our study area (Olsoy et al.
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2015; Aben et al. 2018; 2021). The visibility index represents whether a location
can be observed from surrounding areas, for example by a commonly occurring
predator, the Eurasian Sparrowhawk (Accipiter nisus; see Methods). Areas with
taller vegetation such as orchards, and built-up areas such as settlements have
lower visibility indices and are more sheltered (see Supplementary Information),
as predators’ lines of sight are obstructed by intervening objects (Olsoy et al. 2015).
We found that NDVI did not appear to influence patch duration (GAM parametric
estimate = 0.056, p = 0.86). However, patch durations increased with reduced
patch visibility (GAM parametric estimate = -0.70, p = 0.004).

Birds Occupy Sheltered Areas across Moult Rates

Finding that patch visibility influenced patch durations, we examined whether
birds’ moult-related wing gaps directly influenced their use of sheltered areas
(except swallows, which are aerial foragers). First, fitting a GAM with species-
specific smooths for bulbuls, sparrows, and reed-warblers (see Methods), we found
that only reed-warblers had slightly more sheltered patches with larger wing gaps
(GAM estimate F = 9.30, p = 0.002; Fig. 3.4; visibility: non-molting = 0.33 + 0.17,
molting = 0.31 + 0.19, manipulated = 0.21 + 0.06), potentially because their rapid
moult rate severely reduces flight capacity and makes increased shelter necessary.
This suggests that bulbuls and sparrows, with intermediate moult rates, occupy
sheltered areas of similar (low) visibility regardless of the size of their wing gap
(visibility: bulbuls = 0.39 + 0.18; sparrows = 0.47 + 0.19; see Supplementary
Information Table 3.4).

We went one step further, and used a step-selection approach to sample patches
to which individuals could have moved, and estimated birds’ relative preference
for visibility and NDVI when making movement decisions (see Methods) (Avgar
et al. 2016; Aben et al. 2021). Fitting separate step-selection functions for each
species and each broad moult group (non-molting, molting, and manipulated), we
found that across moult group, all three species preferred low-visibility sheltered
sites over higher visibility ones (Fig. 3.4; Supplementary Information Table S5).
Furthermore, NDVI did not signficantly affect birds’ movement decisions at the
patch scale (see Supplementary Information Table S1). This is consistent with
the idea that birds of our study species mostly avoid open agricultural fields,
where they might be exposed to potential predators, even though fields are highly
productive.

Interpreting the Effect of Wing Moult on Bird Movement

Our study is among the first to quantify how the compromised wing surface as-
sociated with moult directly affects movement and habitat selection in wild birds.
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Our high-throughput tracking system enabled tracking small birds at temporal
(several times per minute) and spatial resolutions (a few metres) far surpassing
current technologies for tracking such small birds (< 50g) — mainly through radio
triangulation and geolocators, that have low temporal (a few fixes per hour or
day, respectively) and spatial resolution (error margins up to 200 km) (Bridge
et al. 2013). Focusing on resident birds outside their breeding season, rather
than migratory or breeding ones, enables at least some control on confounding
factors associated with seasonal physiological changes, and the confounding
effect of migration- or breeding-related energy and time requirements (Alerstam
and Lindstrém 1990; Wikelski et al. 2003; Horvitz et al. 2014). Our study also
extends the geographic range of the field to an understudied region, and to two
less-studied species.

Both rapidly molting clamorous reed-warblers, and slow-molting barn swallows,
did not adjust their large-scale movements to their wing condition. Reed-warblers
move very short distances (< 25m) in low-visibility areas, and can afford rapid,
resource-intensive feather growth (Lindstrém et al. 1993; Newton 2009; Kiat
and Sapir 2017), as this does not compromise their ability to move scansorially
through their dense reedbed habitat, which also offers shelter from visual preda-
tors. At the other extreme, barn swallows that forage exclusively while flying have
evolved a very slow moult rate (Kiat et al. 2016), which likely forestalls significant
direct aerodynamic effects of feather loss on flight capacity. Our work shows how
birds’ evolved moult strategies — which are themselves influenced by movement
strategies (Kiat et al. 2016) — are interlinked with the direct, short-term effects of
moult on movement.

We also found that birds with intermediate moult rates — white-spectacled
bulbuls and house sparrows — adapt their movement strategies to their wing
morphology. Surprisingly, these species moved more when naturally molting
than non-molting. Birds can compensate for lower wing power output by growing
their pectoral muscles, and this may allow them to maintain flight capacity during
the moult, enabling increased movement to find resources for feather growth
(Chai 1997; Swaddle and Witter 1997). Unsurprisingly, increased movements be-
tween putative foraging patches, and an increased frequency of such movements,
together translate into a shorter occupancy duration in each patch. While this
movement strategy conforms with optimal foraging theory — rapid abandonment
of patches to maximise prey intake (Charnov 1976) — it does not appear that
vegetation productivity influences patch use.

When increased movement for high quality resources (Charnov 1976) cannot
compensate for the costs of inefficient flight and feather growth, moving less
overall to conserve energy may be the optimal strategy until new flight feathers
develop. This latter strategy should be expected when the wing gap size is in-
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creased beyond the extent of natural moult, as found in our study. The shorter
between-patch movements of artificially manipulated sparrows and bulbuls with
especially large wing gaps (wing gap index > 12), compared with natural moult,
thus fit within this hypothesis. Importantly, our relatively non-invasive method
only increases the wing’s feather gap size while avoiding wing injury, suggesting
that the reduction in flight is actually due to considerations of flight efficiency,
rather than trauma.

We have for the first time applied the idea of the cumulative viewshed to di-
rectly assess the availability of shelter from visual predators, along birds’ real
and potential movement paths (Olsoy et al. 2015). Birds, like other animals, are
capable of taking the spatial perspective of other individuals (Emery 2000; Krams
2001; Watve et al. 2002; Davidson and Clayton 2016), i.e., whether a location
would be visible to another observer, such as a predator (Watve et al. 2002; Olsoy
et al. 2015). Previous work has focused on demonstrating spatial perspective
taking — and resulting habitat selection — at small spatial scales of a few me-
tres, and typically with a direct predator cue (Krams 2001; Watve et al. 2002).
Our work is the first to combine the spatial perspective-taking concept with the
emerging framework of animal viewshed ecology at landscape scales (Aben et
al. 2018;2021). Our findings suggest that birds can estimate the visibility (and
hence riskiness) of an area from multiple perspectives, and that they can do so at
relatively large, landscape scales (many dozens of metres). Our results also show
how the modelling of animal movement decisions should incorporate individuals’
estimates of what other animals can see (Hampton 1994; Emery 2000). Visibility
analysis provides a simple, mechanistic way to incorporate animals’ potential
assessments of landscape risk into habitat selection models. This could help
move away from purely correlative studies of animal habitat selection, which
usually rely on predictors with very broad applicability (Pettorelli et al. 2011).

All three species studied strongly preferred sheltered, low-visibility habitats
over more open sites, even when the available sites had similar vegetation pro-
ductivity. Predators are unlikely to always be in the vicinity of a specific location,
or indeed to always be visible. This instead points to an avoidance of open agricul-
tural areas where predation risk is highest, showing the immediate, small-scale
effects of a ‘fearscape’ (Olsoy et al. 2015) on animal movement. This pre-emptive
caution may explain why wing condition, which should be expected to determine
vulnerability to predation, did not lead to more sheltered residence patches in
two of three relevant species. Furthermore, our findings suggest that avoidance
of high-visibility areas may be an overlooked, yet potentially broadly applica-
ble mechanism by which agricultural ‘green deserts’ exclude avian biodiversity.
An unwillingness to break cover from sheltered areas, and move through high-
visibility habitat, may explain how individual movement decisions can scale up
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to restrict animal space use, from short home-range moves to longer dispersal
events (Schligel et al. 2020). Overall, our work provides a template for combining
simple experimental methods with technological advances in tracking technol-
ogy, and with a mechanistic approach to landscape ecology, in animal movement
research.
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Figure 3.5: Forecast daily change in wing gap index, per individual. The size of the molt-
related wing gap decreases slowly and constantly as feathers regrow, but the wing gap size may
also increase in gradual jumps as a feather is shed during molt. We calculated the mean daily
progress in the molt score, based on a sample of individuals of each species documented twice
during the molt process. For each bird included in the study, we calculated the expected daily
change in molt-related wing gap size based on the measurement we made at the time of tagging
(day 1 in each panel).
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Vegetation, Visibility, and Land Use across the Study
Area

Land cover

We manually constructed spatial polygons of the land-cover types in our study
area, based on aerial imagery and field experience (see Fig. 3.6A). We categorised
the study area into five main land-cover classes: settlements and built-up ar-
eas, open or agricultural areas, naturally occurring reedbeds, areas with trees
(including orchards), and water (including canals and streams).

Vegetation Productivity

We obtained a standard measure of vegetation productivity, the normalised
difference vegetation index (NDVI), which is widely used in animal ecology (Pet-
torelli et al. 2011). We did this by accessing the European Space Agency Coper-
nicus mission’s Sentinel 2 imagery from the multi-spectral instrument, at a res-
olution of 10m. We accessed data from the Level-1C collection, which covered
the study area during the period in which we were interested (June — Octobet,
2016), rather than using the somewhat better Level-2A data, which covers the
study area only from 2017 onwards. We calculated NDVI using the standard
formula NDVI = (NIR — Red)/(NIR + Red), where NIR is the near infra-red band,
and Red is the red band. We used Sentinel band 8 (near infra-red; 835.1 nm or
833 nm) and band 4 (red; 664.5 nm or 665 nm) to calculate NDVI, with minor
differences in the band wavelengths due to small differences between the two
Sentinel-2 satellites, S2A and S2B. We performed the full pipeline of NDVI cal-
culation on Google Earth Engine (Gorelick et al. 2017), using the Python API
(http://code.google.com/p/earthengine-api/) and the geemap library (Wu 2020).
NDVI across our study area varied between small negative values (indicating
water), O (usually indicating bare ground), and large positive values up to 0.7
(indicating strong vegetation growth; see Fig. 3.6B). The largest NDVI values
were associated with some agricultural fields, as well as with orchards with grow-
ing trees, and with natural reedbeds (compare see Fig. 3.6A - B; see correlation
below).

Visibility Index

We obtained a canopy height model (CHM) of the majority of our study area
from the Survey of Israel at 50cm resolution. We could not access CHM data for
some peripheral areas as this is a border region. In contrast to the more conven-
tional elevational model, CHMs can pick up fine-scale variation in the heights of
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objects above the ground surface. This makes CHMs suitable for investigating
animals’ interactions with their three-dimensional environment, with substantial
spatial detail. CHMs are especially useful in exploring how animal movement
decisions are linked to animals’ lines of sight (Aben et al. 2018; 2021). We used the
Visibility Index plugin v1.2 (https://github.com/zoran-cuckovic/QGIS-visibility-
analysis) for QGIS v3.x (i.e., 3.0 or higher) to calculate the visibility index across
the CHM. We downsampled the CHM to 1m resolution to speed up computation
without losing much detail. We used an observer height of 1.5 m above the canopy
surface; this is the height above either the actual tree canopy, or over any other
surface present in our landscape (water, open fields, settlements etc.). We used
an observer perception distance of 50 m, and calculated the proportion of 16
surrounding angles from which any cell of the CHM could be observed (option
Incoming Views). This yielded a layer with as many cells as the CHM, and with
the same (1 m) resolution, with values of the visibility between 0 and 1.

In biological terms, the visibility index is an estimate of how exposed any loca-
tion is to a low-flying aerial predator, up to 50 m away. We modelled these values
based on the hunting flights of a common bird-preying raptor, the Eurasian spar-
rowhawk (Accipiter nisus Krams 2001; Seress et al. 2011; Krams et al. 2020). We
also considered the visibility index of our study site from the point of view of
a typically high-flying raptor, the common Kkestrel (Falco tinnunculus), and re-
peated the visibility index calculations for an observer height of 15m (Fig. 3.6D).
Kestrels hovering above the landscape surface are conspicuous to prey species
whose avoidance mechanisms are primarily visual, such as small birds which rely
on spotting predators early and taking cover (Krams 2001; Krams et al. 2020).
Thus the strategy of bird-preying raptors such as sparrowhawks is to fly low over
the landscape surface (canopy or ground), and to attempt to surprise birds while
they have broken cover (Krams 2001; Seress et al. 2011; Krams et al. 2020). Ac-
counting for these natural history and behavioural aspects of birds’ predator-prey
interactions, we chose the 1.5m visibility index layer for our analyses.

The visibility index of locations in our study area was strongly tied to land-covet,
as expected (Fig. 3.6C; compare Fig. 3.6A). Agricultural areas have visibility index
values =1.0, and are unlikely to offer much shelter from aerial predators. Orchards
and areas of natural vegetation such as reedbeds are much more sheltered, with
visibility index values < 0.2. Built-up areas such as settlements, surprisingly, have
lower visibility scores than open agricultural fields, as human-made structures
are relatively tall and effectively obstruct the lines of sight of predators (Fig. 3.6C;
compare Fig. 3.6A).
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Figure 3.6: Vegetation productivity, exposure to potential predators, and land-cover across
the Hula Valley, Israel. (A) Our study site in the Hula Valley in northern Israel is an agricultural-
natural habitat matrix. (B) There is substantial fine-scale variation in vegetation cover and
productivity (here, the normalised difference vegetation index: NDVI), even within areas of
similar land-cover. Areas shown in white are water bodies. (C) Despite substantial areas being
covered by growing vegetation, the majority of the study area is relatively exposed to a low-flying
aerial predator (such as Eurasian sparrowhawk Accipiter nisus, with a visibility index score ~1.0.
Sheltered areas, with lower visibility index scores (< 0.4), form fine-scale refugia within the
agricultural landscape. However, areas covered by fruit tree orchards are very sheltered from
low-flying predators, with visibility index scores < 0.2. (D) The visibility of an area is strongly
dependent on the height of the observer, and nearly the entire study area is heavily exposed to a
high-flying aerial predator such as the common kestrel (Falco tinnunculus), hovering at 15m above
the surface. However, this also makes high-flying predators conspicuous to visually oriented prey
such as small birds. To counter this, bird-preying raptors such as sparrowhawks typically fly at
low heights to surprise small birds emerging from cover.
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Relationship between Vegetation Productivity and Visibility

Fine-scale variation in vegetation structure, and especially in plant height,
creates three-dimensional habitat complexity, which translates into the sheltering
effect of vegetated habitats. This suggests that vegetation indices such as NDVI
could be used to examine the availability of shelter. We tested this hypothesis
by examining the relationship between NDVI and the visibility index using a
generalised additive model (GAM). We extracted the NDVI, visibility index, and
land-cover type for 10,000 equally spaced locations across our study area, and
excluded areas which were covered by water. We fit a GAM with the formula:

visibility index ~ s(NDVI, by = landcover) + s(landcover, bs = “re")

This fit a separate smooth visibility-NDVI curve for each land-cover class, and
also modelled land-cover as a random effect (Wood 2017).

We found that the relation between NDVI and visibility index was statistically
significant, but the shape of the relationship was strongly influenced by land-
cover (Fig. 3.7; GAM degrees of freedom [DOF] = 2.99, estimate F = 1,004.02, p <
0.001; R? = 0.596). In areas covered by trees, NDVI values > 0.2 were uniformly
associated with low visibility (< 0.25), and thus, potentially more shelter from
aerial predators (GAM DOF = 5.117, estimate F = 28.0, p < 0.001). In natural
reedbeds, we found a nearly linear relationship, with visibility declining with
increasing NDVI (GAM DOF = 2.227, estimate F = 27.13, p < 0.001). Surprisingly,
in settlements and built-up areas, visibility was consistently < 0.5, despite rel-
atively low NDVI values overall < 0.5 (GAM DOF = 1.0, estimate F = 14.85, p <
0.001). This is likely because tall structures such as houses block lines of sight
quite effectively. Agricultural fields and open areas had predictably high visibility
values (> 0.7) regardless of their NDVI values (GAM DOF = 6.827, estimate F =
26.41, p < 0.001). Overall, in landscapes with mixed vegetation types, or with
substantial topological complexity, NDVI does not have a simple relationship
with the availability of shelter (GAM DOFs > 1.0). Selection for NDVI in animal
movement studies should thus be interpreted as selection for shelter only with
some caution. It is more accurate to obtain and use canopy height models to
calculate visibility indices and so to get an estimate of shelter with a basis in
the mechanisms of visual cognition. Where this is challenging, such as at larger
spatial scales, accounting for land-cover in habitat selection models may be one
alternative.
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Figure 3.7: Generalised additive model fits showing the relationship between NDVI and the
visibility index. Visibility index shown here was calculated with an observer height of 1.5m,
which is representative of the hunting flight of bird-preying raptors (see Fig. S2C).

Modelling the Effect of Wing Gap Size on Large-scale
Movements

We modelled the effect of wing gap size, given by the wing gap index, on large-
scale movements using GAMs. We examined data from four non-migratory birds
common to our study area in northern Israel: barn swallows (Hirundo rustica),
white-spectacled bulbuls (Pycnonotus xanthopygos), house sparrows (Passer do-
mesticus), and clamorous reed warblers (Acrocephalus stentoreus). For bulbuls,
sparrows, and reed warblers, we fit one GAM with species-specific curves to relate
the average hourly distance moved between areas of prolonged residence (“resi-
dence patches” Gupte et al. 2022b), and the individual wing gap index We used
the GAM formula:

distance between patches per hour ~ s(wing gap index, by = species, k = 3)
+s(species, bs = “re")
This fit a GAM with wing gap index as a smoothed term with three knots allowed,
and species as a random effect (Wood 2017). Model coefficients are in Table 3.1.

To determine whether the molt-related wing gap’s size also affected the fre-
quency with which birds moved from one putative foraging patch to another, we
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Coefficients
Intercept 136.89 (60.97)"
WGI - bulbul 1.90 (1.99)*
WGI - sparrow 1.92 (1.99)***
WGTI - warbler 1.00 (1.00)
Species 1.96 (2.00)***
AIC 2590.40
BIC 2619.82
Log Likelihood —-1286.41
Deviance 2573521.55
Deviance explained 0.52
Dispersion 12726.89
R? 0.50
GCV score 13217.10
Num. obs. 210
Num. smooth terms 4

***p < 0.001; **p < 0.01; “p < 0.05

Table 3.1: Generalised additive model coefficients for distance between residence patches.
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Coefficients
Intercept 0.76 (0.13)***
WGTI - bulbul 1.93 (2.00)**
WGI - sparrow 1.36 (1.59)"
WGTI - warbler 1.00 (1.00)
Species 1.92 (2.00)***
AIC 175.48
BIC 202.97
Log Likelihood —79.52
Deviance 26.22
Deviance explained 0.29
Dispersion 0.13
R? 0.27
GCV score 0.13
Num. obs. 210
Num. smooth terms 4

“*p <0.001;**p < 0.01; *p < 0.05

Table 3.2: Generalised additive model coefficients for residence patch switches.

fit a GAM to the number of patch switches (essentially, the number of patches)
per hour of daytime tracking, using the formula:

number of patches visited per hour ~ s(wing gap index, by = species, k = 3)
+ s(species, bs = “re")

Model coefficients are in Table 3.2. For swallows, we fit a GAM with distance
travelled per hour of tracking as the response, and the individual wing gap index
as the smooth predictor. This fit a GAM with wing gap index as a smoothed term
with three knots allowed:

distance per hour ~ s(wing gap index, k = 3)

These results are reported in the main text.
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Modelling the Effect of Wing Gap Size on Patch
Occupancy

We examined whether birds’ molt-related wing gap size affected the duration
that they spent in each residence patch. Following from the results of the models
described above (see main text Figs. 1 — 2), we expected that molting birds would
spend a shorter duration in each patch, as this is the only way to achieve both
farther distances between patches, as well as more frequent patches, given a
constant flight speed. We fit a GAM to the duration (in hours) of each residence
patch as:

patch duration ~ s(wing gap index, by = species, k = 3)
+ visibility index + ndvi

+ s(species, bs = “re")

Here, we also included the visibility index and NDVI as parametric fixed effects.
Model coefficients are in Table 3.3.

Modelling the Effect of Wing Gap Size on Visibility of
Residence Patches

We fit GAMs with species-specific smooths to examine the effect of wing gap size
on the availability of shelter in individual birds’ residence patches. We included
NDVI as a smoothed term to account for the effect of vegetation productivity,
using the formula:

visibility ~ s(winggapindex, by = species, k = 3)
+ s(NDVI, k = 5) + s(species, bs = “re")

Here, the wing gap index is allowed 3 knots, while NDVI is allowed five knots for
a potentially more complex relationship. We did not find a significant effect of
wing gap index on species’ use of more sheltered patches. The one exception was
clamorous reed warblers, in which the visibility of residence patches decreased
linearly with increasing wing gap index (GAM DOF = 1.0 [a linear fit], F = 16.354,
p < 0.001). Full model coefficients are reported in Table 3.4. NDVI had a signifi-
cant, non-linear relationship with visibility, as expected from our analysis of the
visibility-NDVI relationship above (GAM DOF = 3.885, F = 172.493, p < 0.001).
Model results are version controlled at github.com/pratikunterwegs/holeybirds in
the file “data/results/mod_summary_rrv_visibility.txt”
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Coefficients
Intercept 1.15 (0.20)***
Visibility index -0.80 (0.21)***
NDVI 0.09 (0.27)
WGI - bulbul 1.98 (2.00)***
WGI - sparrow 1.00 (1.00)
WGI - warbler 1.82 (1.96)"
Species 1.84 (2.00)***
AIC 6919.17
BIC 6979.39
Log Likelihood —3448.94
Deviance 3230.34
Deviance explained 0.06
Dispersion 1.53
R? 0.06
GCV score 1.54
Num. obs. 2115
Num. smooth terms 4

“**p < 0.001; **p < 0.01; *p < 0.05

Table 3.3: Generalised additive model coefficients for residence patch duration.
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Coefficients
Intercept 0.33 (0.02)***
NDVI 1.00 (1.00)**
WGI - bulbul 1.00 (1.00)
WGI - sparrow 1.76 (1.94)
WGI - warbler 3.90 (3.99)"**
Species 1.88 (2.00)***
AIC —2108.51
BIC —2046.84
Log Likelihood 1065.79
Deviance 22.94
Deviance explained 0.35
Dispersion 0.01
R? 0.34
GCV score 0.02
Num. obs. 1550
Num. smooth terms 5

***p <0.001; **p < 0.01; "p < 0.05

Table 3.4: Generalised additive model coefficients for residence patch visibility.
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Examining the Effects of Visibility and Vegetation
Productivity on Habitat Selection

Finding a correlation between vegetation growth in the form of NDVI, and
visibility, we adopted a step-selection approach (Fieberg et al. 2010; Signer et
al. 2019; Fieberg et al. 2021) to disentangle the effects of these two factors on
the movements of molting birds. We performed this analysis on the movements
of bulbuls, sparrows, and reed warblers between their residence patches. We
excluded swallows because we had not constructed residence patches for these
birds, and because we could not resolve their flight altitude, making it difficult to
determine whether they were using shelter.

We drew 9 alternative patch movements for every real patch movement, that
is from patch N to patch N + 1, and sampled 15 locations distributed around
the alternative moves. We drew the locations of the 9 alternative movements by
drawing first a distance from a gamma distribution fitted to each individual’s
daily movements between patches, and second, an angle drawn from a Von Mises
distribution fitted to the individual’s turning angles during large-scale movements
between patches (see main text Fig. 1). For each of these alternative moves,
we drew 15 locations from a normal distribution centred on the coordinates
of the move, with a standard deviation of 20 m. In this way, we constructed
‘alternative residence patches’, which we could compare with the patches that
birds actually used. At each of the 135 alternative locations (15 locations x 9
patches) we obtained the NDVI and visibility index.

We compared the NDVI and visibility of the 15 points in each potential patch,
with the NDVI and visibility of a flexible number of real positions of patches
actually used by individuals, by fitting a conditional logistic regression to the
patch status (real or alternative). On average, across species and molt status, there
were 28.1 real positions (SD = 25.3) compared against 251 potential positions (SD
= 228). In this way, we were able to determine how birds selected for vegetation
productivity and shelter when moving. Since most birds’ residence patches are
in high-NDVI low-visibility areas (see main text Fig. 4), but are surrounded by
high-NDVI, high-visibility areas, this allowed us to disentangle the provisioning
effects of vegetation from its sheltering effects.

We fit separate regressions for each molt status for each of the three species,
using the formula:

case_ ~ visibility + NDVI + strata(step identity)
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We chose the “approximate” fitting method to reduce computational time. Model
coeflicients are presented in Table 3.5; negative coefficients indicate selection
against visibility, and for shelter.
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Part1I

MECHANISTIC MODELS OF THE
EVOLUTION OF ANIMAL MOVEMENT

Animal movement is neither random nor optimal, but the outcome
of individuals making movement decisions based on local informa-
tion. The strategies underlying these decisions are, like everything
in biology, shaped by animals’ evolutionary contexts. Yet evolution
is rarely considered in animal movement models, possibly because
it is considered to be too slow to be relevant to outcomes on human
timescales.

In the second part of this thesis, I probe the evolutionary causes and
consequences of animal movement using mechanistic, individual-
based simulation models.






Interlude B

A Primer to Mechanistic, Individual-based Models as Conceptual Tools in
Evolutionary Ecology

Pratik R. Gupte

Here, I present a prototype of the models I outlined in the Introduction, in
order to show how my approach differs from approaches used thus far. I show
that considering movement as the outcome of evolved preferences for locally
available cues leads to very different ecological outcomes when compared to
mainstream frameworks such as random walks and optimal local movement.
These differences can be important when such models are used as baselines
against which to compare patterns observed from empirical animal tracking
data, or to make predictions for how key ecological processes — such as the
transmission of pathogens or culture — occur in animal populations (Cantor et al.
2021). Here I focus on movement strategies following Bastille-Rousseau and
Wittemyer (2019), which are among the behavioural strategies of individuals,
and which may also facilitate or constrain which other behavioural strategies
individuals can employ (Nathan et al. 2008; Spiegel et al. 2017).

I compare ecological outcomes of four movement scenarios of a model with
the same ecological processes. In my model, 200 individuals inhabit a landscape
of 30 square units, which also contains 450 discrete food items (see Fig. B-1).
Food items are patchily distributed to form distinct clusters (N = 30, 15 items
per cluster). For the sake of simplicity, individuals choose only a movement
direction, and have the same movement distance of 1 distance unit (like a king in
chess; see Fig. B-1). Individuals can perceive food items (F) and other individuals
at locations 1 distance unit away. When individuals perceive a food item, they
pick it up and handle it for 5 time-steps until they can gain its energetic benefit
(Ruxton et al. 1992; Gupte et al. 2021; Gupte et al. 2022a); I call such individuals
‘handlers’ (H). While individuals are handling an item, they are immobilised.
Individuals compete with each other exploitatively and an item once picked up
by an individual is unavailable to its neighbours; these individuals continue
searching for food, and I call them ‘non-handlers’ (N). Items regenerate at the
same location after a fixed number of timesteps, which I call the regeneration
time (7T; default = 100), and while an item is regenerating, it cannot be sensed by
nearby individuals. Individuals have a lifetime of 400 timesteps, over which they
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forage and move over the landscape. The model’s four scenarios differ in their
implementation of individual movement.

. Available food item |
Unavailable !
e O—

m food item
\/ . e

Handler

Non-handler

Figure B-1: Schematic for a conceptual model of individual foraging movement as a series
of discrete steps in continuous space, with movement steps selected based on individual
preferences for environmental cues. In this model, individuals search for patchily distributed
food items (green circles), which may be immediately available (filled green circles; F), or
may be available only in the future (open green circles). Individuals can sense only available
items, and not unavailable ones. However, as food items are clustered, available items are a
good indirect indicator of where resource clusters are, and where items may become available
in the future. Individuals can also sense other foraging individuals, and can sense whether they
have successfully found, and are handling, a food item (handlers; blue circles), or whether
they are unsuccessful foragers still searching for food (non-handlers; filled pink circles; N).
To decide where to move, individuals sample their environment for these three cues (F, H, N)
at their current location (red circle), and at a number of locations around themselves (large
open grey circles; here, 8 locations). When the sensory range is relatively large there is some
small overlap in samples. Individuals take their next step by assigning each potential direction
asuitability, S = spF + syH + syN + ¢, where the coefficients s, sy, sy are individual weights for
environmental cues (‘cue preferences’), and e is a small error term that helps break ties between
locations. The individual moves in the direction of highest suitability the cue weights fully
determine the movement of an individual. Then say that the cue weights can be implemented as
heritable and, hence, evolvable properties.
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Scenarios in the Model

In scenario 1, individuals perform a random walk, and have a uniform prob-
ability of either remaining in their current location, or moving in a direction
chosen from among eight locations within 1 distance unit (see Fig. B-2A); here,
movement is independent of local cues. In scenario 2, individuals move in a way
that is considered locally optimal in foraging ecology (Stephens and Krebs 2019;
Scherer et al. 2020). Each individual assesses local cues at its current location,
and eight surrounding locations — the number of available food items (F), and
the number of potential competitors (N + H) — and moves to the location with
the highest expected intake, which is given by (F/(N + H + 1)) + ¢; € is a small error
term. Iinitially contrast these two scenarios to show how adding suitability-based
decision making to individual movement can affect the outcomes of movement
individual-based models.

Locally optimal movement models are often labelled mechanistic as they in-
clude environmental cues in decision making (e.g. Scherer et al. 2020), yet the
expected payoff of a location is strongly influenced by the functional response
of intake in relation to competitors. Such implementations make the implicit
evolutionary assumption that all individuals individuals can ‘sense’ the fitness
revenue per location and then move in the direction of fitness increase. I show-
case a more mechanistic way in which individuals can determine their optimal
step when making foraging movements, which is to have distinct preferences for
local cues (food items and potential competitors). These preferences are similar
to the coefficients of habitat- and step-selection functions (Manly 2002; Fortin
et al. 2005; Thurfjell et al. 2014).

In my model’s scenario 3, individuals assesses local cues — the number of
available food items (F), and the number of potential competitors (N + H) — at
eight locations around themselves, and move to the location with the highest
assessed suitability: S = spF +sc(N + H) +¢. Here, s and s are inherited movement
preferences for food items and potential competitors respectively, and can take
any positive or negative numeric values; e is a small error term. It is the relative
contribution of s; and s that determines individuals’ movement strategy (similar
to the behavioural hypervolume of Bastille-Rousseau and Wittemyer 2019). I
initialised the populations to have a broad range of movement strategies, so that it
contained individuals with different combinations of preferences and avoidances
of either food items or competitors. This assumption matters, as it speeds up
initial evolution by orders of magnitude. This method is useful for obtaining a first
‘quick’ overview of the evolutionary outcome, but it is advisable to check whether
the same outcome is achieved when starting with a monomorphic population
with zero cue weights.
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In my evolutionary approach, I am more interested in cue weights (and strate-
gies) that have evolved subject to natural selection. Since individuals inherit their
cue weights from their parents, and successful parents produce more offspring
(lifetime intake is the proxy for ‘fitness’), successful movement strategies are
transmitted to more offspring and will thus spread in the population (an expec-
tation from the replicator equation: Hofbauer and Sigmund 1988). To examine
which movement strategies evolved, I added an evolutionary component to the
model: over 100 generations, individuals reproduce, passing on their preferences
(sps s¢) to their offspring. The preference values undergo random, independent
mutations with a probability p = 0.01, and with a mutation step size drawn from a
Cauchy distribution with a scale of 0.01. Consequently, most mutations are small,
but larger mutations do occasionally occur.

For simplicity, I assume fixed population size, discrete, non-overlapping gener-
ations, asexual reproduction, and haploid individuals. I implemented large-scale
natal dispersal, such that individuals are typically initialised (‘born’) within a
standard deviation of 10 units of their parents (see Travis et al. 1999 for a consid-
eration of how dispersal itself evolves). This makes scenario 3 relatively similar
to the random initialisation of individual positions in scenarios 1 and 2. These
modelling choices must be explicitly implemented in simulation models’ code,
bringing the assumptions of classical models — treated as received wisdom and
hence ignored — to the fore.

A key feature of individual-based simulation models is their ability to incorpo-
rate great amounts of ecological detail (DeAngelis and Diaz 2019). With a simple
extension to scenario 3, I show how to add biologically relevant details to mod-
els, and how these details can affect model outcomes. Foraging can be a form
of public information, serving as an indirect cue of the presence of resources,
and furthermore, helping distinguish between individuals that are immediate
competitors (here, non-handlers), and those which are only future potential com-
petitors (Dall et al. 2005; Beauchamp 2008; 2013; Giraldeau and Caraco 2018:
here, handlers). Thus in my scenario 4, I allow individuals to sense the handling
status of nearby potential competitors, and to have separate heritable preferences
for handlers (sH) and non-handlers (sN). Individuals assess the suitability of
locations as § = sgF + syH + syN + ¢; ¢ is a small error term. I implemented the
same evolutionary and dispersal assumptions as in scenario 3.

Comparing Scenario Outcomes

As expected, optimally moving scenario 2 individuals had a higher per-capita
intake than randomly moving scenario 1 individuals (Fig. B-2). Individuals with
higher intake should be expected to move less, as my model — in line with for-
aging ecology theory (Charnov 1976) — explicitly considers a tradeoff between
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movement and intake. Specifically, the tradeoff is that when an individual is
handling, it cannot move towards areas of higher future expected intake, and
if an individual moves into locations where there are no food items, it loses out
on intake. Individuals following a locally optimal strategy moved more than
random walkers (Fig. B-2), a clear confirmation of the expectation that such a
strategy is more efficient than random walking (i.e., more food for less movement).
Nonetheless, individuals in both scenarios had very similar numbers of spatial
associations with other individuals (Fig. B-2, Fig. B-3). Overall, this comparison
demonstrates the importance of active decision making in animal movement, and
suggests why animals have evolved sophisticated sensory apparatuses to gather
information from their environment (Avgar et al. 2013; Mann 2021; Swain et al.
2021; Berger et al. 2022). Such evolution is likely to be strongly dependent on
fine-scale ecological conditions, primarily the availability of information in the
environment, as well as the energetic cost of evolving and maintaining sensory
capabilities (Swain et al. 2021).

I found that all 20 replicates of scenario 3 models showed that populations
converged to a similar movement strategy within only a few (100) generations.
This strategy was to primarily prefer moving towards food items, while having a
small preference or avoidance of potential competitors. The ‘evolved’ scenario 3
individuals had better ecological performance than their ancestral populations
(which I consider the first generation, G = 1), taking in more food items on average,
and moving less. Indeed, these populations outperformed both the random
walk and locally optimal movement implementations as well. Adapting their
movement strategies to the landscape also affected the social structure of scenario
3 populations — there were fewer isolated individuals, more spatial clustering,
and consequently, individuals encountered more unique conspecifics on average
(higher mean degree; Fig. B-3).

Individuals evolved after 100 generations in scenario 4 had mostly evolved a
movement strategy that I describe as ‘handler tracking’, i.e., having a preference
for successful neighbours handling a food item (sH > 0), but avoiding unsuccess-
ful neighbours that were still searching for a food item (sN < 0; Gupte et al. 2021;
Gupte et al. 2022a). Importantly this strategy allows individuals to use indirect
social information (Dall et al. 2005; Spiegel and Crofoot 2016), in the form of the
positions of successful neighbours, to find resource clusters — even when these
clusters are not immediately perceptible (due to earlier depletion).

Consequently, scenario 4 individuals outperform all three previous scenarios’
individuals by having a higher mean per-capita intake (Fig. B-2; in some cases,
substantially higher). This naturally leads to the conclusion that the resource
landscape in scenario 4 is more depleted than in the three previous scenarios.
While not shown here, scenario 4 individuals after 100 generations of selection,
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Figure B-2: Population ecological outcomes resulting from four types of movement strat-
egy. (A) In scenario 1, individuals moving randomly across the landscape had expectedly lower
per-capita intake than individuals moving in a locally optimal way (scenario 2). When individu-
als selected their movement step based on heritable movement preferences for food items and
conspecific competitors (scenario 3, ‘mechanistic 2 cues’), after only 100 generations of natural
selection for adaptive movement preferences, scenario 3 populations had a higher intake than
ostensibly locally ‘optimal’ movement. Allowing individuals to differentiate between current and
future competitors (non-handlers and handlers, respectively; scenario 4, ‘mechanistic 3 cues’),
improved individuals’ intake by a small amount, suggesting that adding information sources
likely has diminishing returns, and that relatively simple step-selection movement strategies may
suffice on even complex, fluctuating resource landscapes. (B) Surprisingly, locally optimal movers
also moved more than random walkers, with no apparent trade-off between movement and intake.
Individuals in scenario 3 moved less than those in scenario 2 (locally optimal), but still more than
random walkers. Individuals in scenario 4 moved about the same as those in scenario 3, sug-
gesting that being able to perceive neighbours’ foraging status does indeed lead to more efficient
movement strategies (i.e., more intake for similar movement). (C) Movement implementations
strongly influenced individuals’ associations (based on proximity), with step-selection based
movement leading to many times more associations than random or locally optimal movement.
Surprisingly, individuals in scenario 4 had many more associations than in scenario 3; this shows
an unexpected difference that could have substantial consequences for the outcomes of social
processes such as the transmission of animal culture or infectious pathogens.

also outperform scenario 4 populations that have not undergone selection (i.e.,
their ancestors), demonstrating the difference that adding evolutionary dynamics
makes even to a mechanistic, habitat selection model.

Scenario 4 individuals’ evolved use of social information on the potential lo-
cations of resource clusters also leads them to have more spatial associations
with conspecifics — indeed, up to three times as many as in the random walk and
locally optimal movement models (Fig. B-2). These associations likely occur at
or near resource clusters, leading to substantial spatial-social clustering in the
final generation of scenario 4 populations (Fig. B-3); and scenario 4 individuals
across replicates associated with more individuals than in scenarios 1, 2 and 3.
Spatial-social structure in animal populations can have important consequences
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for a wide range of processes and phenomena in animal ecology, including the
transmission of animal culture as well as the spread of infectious pathogens (Ro-
mano et al. 2020; Cantor et al. 2021; Romano et al. 2021). The class of models
I advocate are thus well suited to investigating questions around the emergent
structure of animal societies (see Chapter 5 for more on this).
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Figure B-3: Different movement strategies lead to substantially different patterns of
spatial-social associations. Individuals moving randomly (A: scenario 1), or in locally optimal
ways (B: scenario 2) have sparse social networks, with individuals spread out over the simulated
resource landscape. Most individuals have a low degree, i.e., few unique social partners. (C) In
contrast, individuals making step-selection based movement decisions based on two cues (food
and competitors; scenario 3) have much more spatially clustered networks, with a substantially
higher mean degree (more unique social partners). Over 100 generations, scenario 3 individuals
are selected for their preference for food items, and the resulting populations form networks
that are also clustered, but with strong connectivity between clusters, and more unique partners
overall. (D) A similar dynamic is seen in scenario 4, where most individuals still avoid immediate
competitors (non-handlers), leading to more dispersed populations than scenario 3, though with
strong links between nodes.



Visualising and Interpreting Evolved Variation

In scenarios 3 and 4, individuals’ movement preferences (their weights for
local environmental cues) may take any numeric value. It is the combination of
these weights that altogether forms each individual’s movement strategies; this
approach has been referred to as the ‘behavioural hypervolume’ approach when
applied to step-selection coefficients estimated from real animal tracking data
(Bastille-Rousseau and Wittemyer 2019). One challenge in encoding behavioural
strategies in this way is interpreting the evolved variation in strategies, if any.
A key step in doing so is exploratory visualisation — the evolved movement
preferences can be plotted in relation to each other to check for any obvious
clusters.

Here, I would caution that conceptual individual-based models (and step-
selection functions fitted to empirical data) may have to deal with a large num-
ber of model parameters (Mueller et al. 2011), or function coefficients (Bastille-
Rousseau and Wittemyer 2019). This makes clustering and interpreting these
individual-level attributes a challenge, requiring complex classification approaches
(Bastille-Rousseau and Wittemyer 2019). This challenge is a powerful incentive
to keep conceptual models’ step-selection calculations as simple as possible.

In contrast, in my conceptual models, cue weights can be readily plotted in
three dimensional space (with scenario 3 requiring only two dimensions for s
and s.). Here, I show how the three-weight individuals of scenario 4 (with s, sy,
and sy) can be represented in a convenient figure: with s and s; asthe Xand Y
axes respectively, and the weight for non-handlers s, represented by a diverging
colour scale (Fig. B-4).

The interpretation of this figure, which also helps with similar figures in chap-
ters 4 and 6 is as follows. Each point on the figure represents a single individual.
Each individual is plotted in a three dimensional space (colour representing po-
sition in the third dimension); this is Bastille-Rousseau and Wittemyer (2019)’s
behavioural hypervolume. Each individual’s position is calculated by scaling
each of its cue preferences (say, s;) by the sum of the absolute cue preferences:
scaled s; = s;/(Z|s,|). This means that regardless of the number of cue preferences
(in this case, three), all axes are bounded by [-1, +1]. The regions individuals can
take in the two primary axes is bounded by the dashed lines.

Individuals that lie towards the extremes (-1 or +1) of any axis should be inter-
preted as making their movement decisions primarily based on that particular
cue. For example, in Fig. B-4, many individuals have values of s; close to +1.0,
indicating that they ‘assign’ food item cues the highest, and indeed nearly all the
weight when making movement decisions. Another perspective on this is that for
such individuals, the combination of cue values and the individuals’ weight for
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them (e.g. sy x N) is often less than e, i.e., their sensitivity to the cue is on the order
of their perception error — not of great importance. This same interpretation
applies to individuals’ position on the colour scale; extreme values indicate a
strong preference or avoidance of the relevant cue (here, sy).

Interestingly, plotting individuals’ evolved movement strategies in this way
reveals that there is a substantial amount of variation among individuals. Indeed,
individuals appear to occupy a spectrum between prioritising only food item cues
(high sz) and only handler cues (high s;). More rarely, some individuals’ position
indicates that they have a strong avoidance of non-handlers. In this model, this
suggests that a broad range of movement strategies can and does coexist, neatly
demonstrating that behavioural variation can arise spontaneously from simple
mechanistic assumptions in this class of models. Similar figures in chapters 4
show how strong correlations can arise between movement strategies as shown
here, and other behavioural strategies.
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Figure B-4: Evolved variation in step-selection movement strategies revealed by simple
visualisation of evolved cue weights in scenario 4. Plotting the scaled values of the heritable
movement preferences (weights for local environmental cues) in a trait space bounded by [-1,
+1] can reveal evolved individual variation in movement strategies. Here, most individuals lie
along a behavioural spectrum: on one end (s; ~ +1.0), some individuals’ movement decisions are
mostly influenced by differences (if any) among food item counts at the potential destinations.
On the other end (sy ~ +1.0), some individuals prioritise moving towards locations where there
are many handlers. These patterns emerge spontaneously as results of natural selection from the
simple mechanisms encoded by the model, without being forced by the modeller to represent any
specific phenomenon. Yet they can be interpreted as showing the evolution and maintenance of
individual variation, and especially of a broad mixture of producer-scrounger foraging strategies
(Beauchamp 2008).
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...[T]he highest function of ecology is the understanding of consequences.
— from Dune, by Frank Herbert.

Abstract

Competition typically takes place in a spatial context, but eco-evolutionary
models rarely address the joint evolution of movement and competition strate-
gies. Here we investigate a spatially explicit forager-Kleptoparasite model where
consumers can either forage on a heterogeneous resource landscape, or steal
resource items from conspecifics (kleptoparasitism). We consider three scenarios:
(1) foragers without kleptoparasites; (2) consumers specializing as foragers or as
kleptoparasites; and (3) consumers that can switch between foraging and klep-
toparasitism depending on local conditions. We model movement strategies as
individual-specific combinations of preferences for environmental cues, similar
to step-selection coefficients. Using mechanistic, individual-based simulations,
we study the joint evolution of movement and competition strategies, and we
investigate the implications for the distribution of consumers over this landscape.
Movement and competition strategies evolve rapidly and consistently across
scenarios, with marked differences among scenarios, leading to differences in
resource exploitation patterns. In scenario 1, foragers evolve considerable indi-
vidual variation in movement strategies, while in scenario 2, movement strategy
shows a swift divergence between foragers and kleptoparasites. When individu-
als’ competition strategy is conditional on local cues, movement strategies facili-
tate kleptoparasitism, and individual consistency in competition strategy also
emerges. Across scenarios, the distribution of consumers differs substantially
from ‘ideal free’ predictions. This is related to the intrinsic difficulty of moving
effectively on a depleted resource landscape with few reliable movement cues.
Our study emphasises the advantages of a mechanistic approach when studying
competition in a spatial context, and suggests how evolutionary modelling can
be integrated with current work in animal movement ecology.
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Introduction

NTRASPECIFIC competition is an important driver of population dynamics and
I the spatial distribution of organisms (Krebs and Davies 1978), and has two
main types, ‘exploitation’ and ‘interference’. In exploitation competition, individ-
uals compete indirectly by depleting a common resource, while in interference
competition, individuals compete directly by interacting with each other (Birch
1957; Case and Gilpin 1974; Keddy 2001). A special case of interference com-
petition which is widespread among animal taxa is ‘kleptoparasitismy’, in which
an individual steals a resource from its owner (Iyengar 2008). Since competi-
tion has an obvious spatial context, animals should account for the locations of
competitors when deciding where to move (Nathan et al. 2008). This is expected
to have downstream effects on animal distributions across spatial scales, from
resource patches (Fretwell and Lucas 1970), to species distributions (Duckworth
and Badyaev 2007; Schlégel et al. 2020). Animal movement strategies are thus
likely to be adaptive responses to landscapes of competition, with competitive
strategies themselves being evolved responses to animal distributions. Empirical
studies of this joint evolution are nearly impossible at large spatio-temporal scales.
This makes models linking individual movement and competition strategies with
population distributions necessary.

Contemporary individual-to-population models of animal space-use (reviewed
in DeAngelis and Diaz 2019) and competition, however, are only sufficient to
represent very simple movement and prey-choice decisions. For example, models
including the ideal free distribution (IFD; Fretwell and Lucas 1970), information-
sharing models (Giraldeau and Beauchamp 1999; Folmer et al. 2012), and producer-
scrounger models (Barnard and Sibly 1981; Vickery et al. 1991; Beauchamp 2008),
often treat foraging competition in highly simplified ways. Most IFD models con-
sider resource depletion unimportant or negligible (continuous input models,
see Tregenza 1995; Van Der Meer and Ens 1997), make simplifying assumptions
about interference competition, or even model an ad hoc benefit of grouping (e.g.
Amano et al. 2006). Meanwhile, producer-scrounger models primarily examine
the benefits of choosing either a producer or scrounger strategy given local condi-
tions, such as conspecific density (Vickery et al. 1991), or the order of arrival on
a patch (Beauchamp 2008). Overall, these models simplify the mechanisms by
which competition decisions are made, and downplay spatial structure (see also
Holmgren 1995; Spencer and Broom 2018; Garay et al. 2020).

On the contrary, spatial structure is key to foraging (competition) decisions
(Beauchamp 2008). How animals are assumed to integrate the costs (and po-
tential benefits) of competition into their movement decisions has important
consequences for theoretical expectations of population distributions (Van Der
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Meer and Ens 1997; Hamilton 2002; Beauchamp 2008). In addition to short-
term, ecological effects, competition also likely has evolutionary consequences
for individual movement strategies, setting up feedback loops between ecology
and evolution. Modelling competition and movement decisions jointly is thus a
major challenge. Some models take an entirely ecological view, assuming that
individuals move or compete ideally, or according to fixed strategies (Vickery et al.
1991; Holmgren 1995; Tregenza 1995; Amano et al. 2006), but see (Hamilton
2002). Models that include evolutionary dynamics in movement (De Jager et al.
2011; 2020) and foraging competition strategies (Beauchamp 2008; Tania et al.
2012) are more plausible, but they too make arbitrary assumptions about the
functional importance of environmental cues to individual decisions.

Mechanistic, individual-based models are well suited to capturing the complex-
ities of spatial structure, animal decision-making, and evolutionary dynamics
(Guttal and Couzin 2010; Kuijper et al. 2012; Getz et al. 2015; 2016; White et al.
2018b; Long and Weissing 2020; Netz et al. 2021b); for conceptual underpin-
nings see Huston et al. (1988), Mueller et al. (2011), and DeAngelis and Diaz
(2019). Individual-based models can incorporate the often significant variation
in movement and competition preferences found in populations, allowing indi-
viduals to make different decisions given similar cues (Laskowski and Bell 2013).
Individual-based models also force researchers to be explicit about their mod-
elling assumptions, such as how exactly competition affects fitness. Similarly,
rather than taking a purely ecological approach and assuming individual differ-
ences (e.g. in movement rules: White et al. 2018b), allowing movement strategies
to evolve in a competitive landscape can reveal whether individual variation
emerges in plausible ecological scenarios (as in Getz et al. 2015). This allows the
functional importance of environmental cues for movement (see e.g. Scherer et al.
2020) and competition decisions in evolutionary models to be joint outcomes of
selection, and lets different competition strategies to be associated with different
movement strategies (Getz et al. 2015).

Here, we present a spatially-explicit, mechanistic, individual-based model
of intraspecific foraging competition, where movement and competition strate-
gies jointly evolve on a resource landscape with discrete, depletable food items
that need to be processed (‘handled’) before consumption. In our model, for-
agers make movement decisions using inherited, evolvable preferences for local
ecological cues, such as resource and competitor densities; the combination of
preferences for each cue forms individuals’ movement strategy (similar to relative
step-selection: Fortin et al. 2005; Avgar et al. 2016). Lifetime resource consump-
tion is our proxy for fitness; more successful individuals produce more offspring,
transmitting their movement and foraging strategies to future generations (with
small mutations). We consider three scenarios: in the first scenario, we examine
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only exploitation competition. In the second scenario, we introduce kleptopara-
sitic interference as an inherited strategy, fixed through an individual’s life. In the
third scenario, we model kleptoparasitism as a behavioural strategy conditioned
on local environmental and social cues; the mechanism underlying this foraging
choice is also inherited.

Our model allows us to examine the evolution of individual movement strate-
gies, population-level resource intake, and the spatial structure of the resource
landscape. The model enables us to take ecological snapshots of consumer-
resource dynamics (animal distributions, resource depletion, and competition)
proceeding at evolutionary time-scales. Studying these snapshots allows us to
check whether, when, and to what extent the spatial distribution of competi-
tors resulting from the co-evolution of competition and movement strategies
corresponds to standard IFD predictions. We investigate (1) which movement
strategies evolve in our three competition scenarios, (2) whether movement strate-
gies differ within and between competition strategies in our scenarios, and (3)
whether the emergent spatial distributions of consumers corresponds to ‘ideal
free’ expectations.

The Kleptomove Model of Movement and Competition

Individual-based models have to explicitly specify numerous assumptions
(e.g. spatial structure, individual interactions, event timescales), but this helps
expose assumptions that are often hidden below the surface in analytical models.
We kept our model assumptions as simple and generic as possible, striving for
general, conceptual insights. To keep the model realistic, we based it on the
foraging behavior of shorebirds such as oystercatchers (Haematopus spp.), which
are extensively studied in the context of foraging competition, both empirically
(e.g. Vahl et al. 2005a,b; 2007; Rutten et al. 2010a,b), and using individual-based
models (reviewed in Stillman and GosszCustard 2010).

Our environment is a fine grid of cells, and each grid cell can hold multiple
individuals. Resources are discrete, as is our conception of time within and
between generations. Our population, with a fixed number of individuals (N
= 10,000), moves on a landscape of 5122 grid cells (approx. 1 individual per
26 cells), with wrapped boundaries (i.e., a torus); individuals passing beyond
the bounds at one end re-appear on the opposite side. The model has two time
scales, first, an ecological time scale of T timesteps comprising one generation
(default T = 400), during which individuals move, make foraging decisions, and
handle prey-items they find or steal. Individuals are immobile while handling
food items, creating the conditions for kleptoparasitism (Brockmann and Barnard
1979; Ruxton et al. 1992). At the end of each generation, individuals reproduce,
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transmitting their movement and foraging strategies to their offspring, whose
number is proportional to individual intake at the ecological time scale. Our
model has 1,000 generations, and this comprises the evolutionary timescale.

Resource Landscape

We considered our discrete resources, called ‘prey-items’ to represent mussels,
a common prey of many shorebirds, whose abundances are largely driven by
external gradients. We assigned each cell a constant probability of generating a
new prey-item per timestep, which we refer to as the cell-specific growth rate r.
We modelled clustering in landscape productivity by having the distribution of r
across the grid take the form of 1,024 resource peaks, placed at regular distances of
16 grid cells from the peaks around them; r declines from the centre of each peak
(called r,,,,) to its periphery (see Fig. 4.1A). Thus the central cell generates prey-
items five times more frequently than peripheral cell: at r,,,, = 0.01, central cells
generate one item per 100 timesteps (four items/generation), while the peripheral
cells generate one item only every 500 timesteps (< one item/generation). All
landscape cells have a uniform carrying capacity K of 5 prey-items. While a cell is
at carrying capacity its r is 0. Cells are initialised with prey-items proportional to
their r (see e.g. Fig. 4.1A).

Foragers perceive a cue indicating the number of prey-items P in a cell, but
fail to detect each item with a probability ¢, and are thus successful in finding a
prey-item with a probability 1 - g”. Individuals on a cell forage in a randomised
sequence, and the probability of finding a prey-item (1 — g*) is updated as indi-
viduals find prey, reducing P. Foragers that find a prey-item must handle it for a
fixed handling time T (default = 5 timesteps), before consuming it (Ruxton et al.
1992). Natural examples include the time required for an oystercatcher to break
through a mussel shell, or a raptor to subdue prey; overall, the handling action
is obvious, and the prey is not fully under the control of the finder (Brockmann
and Barnard 1979). Foragers that do not find a prey-item are considered idle in
that timestep, and are counted as ‘non-handlers’. Similarly, handlers that finish
processing their prey in timestep ¢ can only forage again in timestep ¢ + 1, i.e.,
they are idle in the timestep ¢.

All individuals move simultaneously at the end of each timestep ¢, and then
implement their foraging or kleptoparasitic behaviour to acquire prey. However,
handlers do not make any movements until they have fully handled and con-
sumed their prey. We model movement as comprised of small, discrete steps
between adjacent cells. Across scenarios, individuals make movement decisions
using evolved cue preferences. Individuals select a destination cell, after assess-
ing potential destinations based on available cues, similar to approaches used
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previously (Getz et al. 2015; 2016; White et al. 2018b; Scherer et al. 2020; Netz
etal. 2021b).

To move, individuals scan the nine cells of their Moore neighbourhood for
three environmental cues, (1) an indication of the number of discrete prey-items
P, (2) the number of individuals handling prey H (‘handlers’), and (3) the num-
ber of individuals not handling prey N (‘non-handlers’). Individuals rank the
potential destinations (including their current cell) by their suitability S, where
S = spP + syH + syN, and move to the most suitable cell in timestep ¢ + 1. The
individual preferences for each cue, sp, sy, and sy, have numeric values, are con-
sidered to be evolvable traits that can be transmitted between generations, and
undergo independent mutation. Since individuals are constrained to perceiving
and moving short distances, they may not always sense their best long-term move.

It is the combination of cue preferences, and especially their value relative to
each other, that determines individual movement decisions (similar to relative
selection coefficients, Fortin et al. 2005; Avgar et al. 2016; White et al. 2018b).
For example, an extreme value of s, relative to the other preferences would mean
that an individual’s movement decisions are guided primarily by differences in
the local density of prey-items. We call an individual’s combination of inherited
preferences its movement strategy (see e.g. Fig. 4.1E).

Competition Strategies

In scenario 1, we simulate only exploitative competition; individuals (hence-
forth called ‘foragers’) move about on the landscape and probabilistically find,
handle, and consume prey-items. Foragers can be either in a ‘searching’ or a
‘handling’ state (Holmgren 1995).

In scenario 2, the competition strategy is genetically determined and transmit-
ted from parents to offspring: exploitative competition (by foragers), or kKleptopar-
asitic interference (by kleptoparasites). Kleptoparasites cannot extract prey-items
directly from the landscape, and only steal from handlers (see Holmgren 1995).
Kleptoparasites are always successful in stealing from handlers, and such suc-
cessful surprise attacks are commonly observed among birds (Brockmann and
Barnard 1979). When multiple kleptoparasites target the same handler, only one
(randomly selected) is considered successful — thus kleptoparasites compete
exploitatively among themselves. Kleptoparasites displace the handler that they
robbed of prey up to 5 cells away from their location. Having acquired prey, klep-
toparasites become handlers, but need only handle prey for Ty — ¢, timesteps,
where 1, is the time that the prey has already been handled by its previous owner.
Once a kleptoparasite becomes a handler, it can also be targeted by other klep-
toparasites. Unsuccessful kKleptoparasites are considered idle, and are counted
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as non-handlers. Movement strategies evolve independently of the competition
strategy, as in scenario 1; however, the optimal movement strategy for foragers
need not be the same as that for kleptoparasites.

In scenario 3, each individual can either act as a forager, or as a kleptopara-
site, depending on its assessment of local conditions. Similar to how movement
decisions are made based on local cues, individuals process cell-specific envi-
ronmental cues in timestep ¢ to determine their competition strategy in the next
timestep as

forager, if wpP + wyH + wyN = w,
strategy = & P H N 0 (4.1)

kleptoparasite, otherwise

where the cue preferences wp, wy and wy, and the threshold value wy, are numeric
values, and heritable between generations (with small, rare, independent muta-
tions). The combination of the cue preferences for competition decisions forms
each individual’s competition strategy. Individuals’ competition strategies may
lead to specialisation as foragers or Kleptoparasites (as in scenario 2), or to plastic
behaviour conditioned on local cues. The competition dynamics are the same as
in scenario 2.

Reproduction and Inheritance

Our model considers a population of fixed size (10,000 individuals) with dis-
crete, non-overlapping generations. For simplicity, we assume that individuals
are haploid and reproduction is asexual. In scenarios 1 and 2, individuals only
inherit and transmit their cue preferences (sp, s, s5) which determine movement
decisions. In scenario 3, individuals also inherit cue preferences for competition
decisions (wp, wy, wy, wy), and transmit them to offspring. The movement and
competition cue preferences all mutate independently in scenario 3. Each individ-
ual’s number of offspring is proportional to the individual’s total lifetime intake
of resources; hence, resource intake is used as a proxy for fitness. A weighted
lottery (with weights proportional to lifetime resource intake) selects a parent
for each offspring in the subsequent generation (see e.g. Tania et al. 2012; Netz
et al. 2021b). Across scenarios, the cue preferences for movement decisions are
subject to rare, independent mutations (¢ = 0.001). The mutational step size
(either positive or negative) is drawn from a Cauchy distribution with a scale of
0.01 centred on zero, allowing for a small number of very large mutations while
most mutations are small. In scenario 2, foragers may infrequently mutate into
a kleptoparasite (or vice versa; u = 0.001). In scenario 3, the competition cue
preferences also mutate as described above. Each offspring is initialised at ran-
dom locations on the landscape, leading individuals to experience conditions
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potentially different from those of their parent. We chose this option because it
allows us to focus on adaptive movement strategies, whereas limited dispersal
confounds movement and local adaptation.

Simulation Output and Analysis

We ran all three scenarios at a default r,,,, of 0.01, which we present in the
Results, and also across a range of r,,,,,, values between 0.001 and 0.05 (see Fig. 4.6
and Supplementary Material Figs. 7 — 9). We initialised the cue preferences with
values drawn from a Cauchy distribution with a scale of 0.01 centred on zero; this
allows a very small amount of variation in the population (see e.g. Fig. 4.1E), and
is equivalent to a single generation of mutation from all preferences initialised
at zero (see Reproduction and Inheritance above). Normalising each individual’s
cue preferences by the sum of the absolute values of all preferences s; = s;/(|sp| +
Isyl + IsyD), for s; € sp, sy, sy, makes it possible to visualise individuals on a three-
dimensional trait space of relative preferences bounded by (-1.0: strongly avoid,
+1.0: strongly prefer). With remarkably consistent outcomes across replicates in
each scenario, and as each simulation run produced massive datasets, we show
the outcomes of three replicates here. More data can be generated and analysed
using the code linked below.

Across scenarios, in each generation, we counted the number of times foragers
were searching for prey, kleptoparasites were searching for handlers, and the
number of timesteps that individuals of either strategy were handling a prey-
item. We refer to the ratio of these values as the population’s ‘activity budget’. We
examined how the population activity budget developed over evolutionary time,
and whether a stable equilibrium was reached. Furthermore, we counted the
population’s mean per-capita intake per generation as a measure of population
productivity.

To understand the evolution of individual movement and competition strate-
gies, we exported the cue preferences of each individual in every generation of the
simulation. We scaled each cue preference by the sum of the absolute values of the
preferences, allowing us to plot individuals in a standardised three-dimensional
trait space of relative cue preferences (with colour as an axis on a two-dimensional
plot). Individuals’ position in this space allowed us to easily visualise and com-
pare variation in movement strategies within and between competition strategies
and across scenarios.

Scenario 3 competition strategies are determined by four values (3 preferences
and threshold value), and competition decisions are outcomes of the interactions
of these preferences with individuals’ movement decisions and ecological con-
ditions. This makes strategies per se difficult to visualise. We first scaled the
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competition cue preferences and the threshold value as we did the movement
cue preferences. To illustrate variation in the competition strategies evolved, we
presented each individual in representative generations (G = 10, 30, 100, 300,
950) with combinations of two key cues, handler and prey density (each 0 - 5; 36
combinations overall). We summarised the proportion of individuals that would
attempt to steal at each combination of cue values (see Eqn. 1; Fig. 4.4F).

We exported snapshots of the entire simulation landscape at the mid-point of
each generation (¢ = 200). Each snapshot contained data on (1) the number of
prey-items, (2) the number of handling individuals, and the number of individuals
using either a (3) searching forager strategy or (4) kleptoparasitic strategy, on each
cell. We used a subset of the total landscape (602 of 5122 cells) for further analyses
to speed up computation. We determined the availability of direct resource cues
for movement in each cell by calculating the cell-specific item gradient for each
landscape snapshot, as the difference in prey counts between each cell and its
neighbouring cells. For each generation, we calculated the proportion of cells
from which it was possible to sense differences in prey-items, i.e., a neighbouring
cell with either more or fewer items.

A basic prediction of the IFD and the related matching rule is that the number
of individuals on occupied patches should be proportional to patch productivity
(Fretwell and Lucas 1970; Parker 1978; Houston 2008). Patch productivity is
challenging to measure in real world systems, but is among our model’s building
blocks, and we examined the correlation between the number of individuals
(excluding handlers) and the cell-specific productivity r, expecting large positive
values.

Outcomes from the Kleptomove Model

Scenario 1: No Kleptoparasitism

In scenario 1, foragers deplete prey-items faster than they are replenished, dras-
tically reducing the overall number of prey within 50 generations (Fig. 4.1A). The
population activity budget is split between searching and handling (Fig. 4.1B);
while handling and the mean per-capita intake are both initially low, they peak
within ten generations (Fig. 4.1C), as individuals easily acquire prey-items from
the fully stocked landscape in the first few generations. With dwindling prey-
items, fewer searching foragers find prey, and handling as a share of the activity
budget declines to a stable ~ 45% within 50 generations, and mean per-capita
intake also stabilises (Fig. 4.1C). Across generations, the correlation between the
number of foragers and cell productivity is only slightly positive (Fig. 4.1D). This
is in contrast with the perfect correspondence between resource input rate and
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Figure 4.1: Eco-evolutionary implications of pure exploitation competition in scenario
1. (A) A population comprised solely of foragers seeking prey on a resource landscape swiftly
depletes initially abundant prey-items within 10 generations (of 1,000 simulated). Foragers
maintain this prey-item scarcity throughout the remaining generations of the simulation, despite
regular resource regeneration (see G = 950). (B) Within 20 generations of evolution, the population
reaches an equilibrium in the relative proportion of time spent on searching for prey and handling
prey, and in (C) mean per-capita intake. (D) The number of foragers per cell is only weakly
correlated with cell productivity r, contrary to the input matching rule of Ideal Free Distribution
theory. (E) A wide range of movement strategies co-exist on the landscape over hundreds of
generations. Individuals may focus on moving up gradients of prey-items (sP = 1.0: prefer),
moving towards successful foragers (handlers), or moving away from unsuccessful foragers which
are potential competitors (sN = red). Panels A, E show a single replicate, panels B, C, D and D
show three replicate simulations with log-scaled X-axes (lines overlap almost perfectly); all panels
are for r,,,, = 0.01; panel E shows 2,500 individuals.

forager density (the ‘input matching rule’), which is a defining property of the IFD
(Parker 1978; Houston 2008). Contrary to standard IFD assumptions, foragers
cannot directly sense the local cell productivity r; instead they can only use the
(small) number of prey-items available in a cell as a cue for local productivity. A
wide range of movement strategies co-exist on the landscape (see all generations
in Supplementary Material Fig. 2, 6). Some individuals mostly move up gradients
of prey-items (Fig. 4.1E; s, ~ 1.0), some move primarily towards successful for-
agers (handlers), while others move away from unsuccessful foragers which are
potential competitors (more red sy).
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Scenario 2: Co-existence of Foragers and Kleptoparasites

In scenario 2, with fixed foraging and kleptoparasitism allowed, the spatial
distribution of prey-items at equilibrium is very different from scenario 1. Con-
sumers graze down resource peaks until few prey-items remain on the landscape;
however, within 50 generations the resource landscape recovers with prey abun-
dances higher than in the earliest generations (Fig. 4.2A). This is because of the
emergence of kleptoparasites (Fig. 4.2B): in early generations, kleptoparasites are
rare, and the activity budget, the mean per-capita intake, and the distribution of
consumers over the landscape, are similar to scenario 1. As resources are depleted
and kleptoparasite-handler encounters become more common than forager-prey
encounters, kleptoparasitism becomes the majority strategy (a stable ~70% of
the population; see Fig. 4.2B), and searching for handlers to rob becomes the
commonest activity. However, the high frequency of this activity and the low
frequency of handling, indicate that few kleptoparasites are successful at robbing
handlers.

With few foragers, few prey-items are extracted from the landscape, which
recovers beyond its initial prey abundance within 50 generations (Fig. 4.2A). As
fewer prey-items are extracted overall, mean per-capita intake also declines from
an initial peak (Fig. 4.2C). Despite the strong spatial structure of the resource
landscape within 50 generations, the correlation between consumers (of either
strategy) and cell productivity remains weak or zero across generations (Fig. 4.2D).
This may be partially explained by the ecology of kleptoparasitism: foragers are
regularly displaced by kleptoparasites, and kleptoparasites must themselves move
to find handlers.

There is a sharp evolutionary divergence of movement strategies between for-
agers and kleptoparasites. While both foragers and kleptoparasites evolve to
prefer prey and avoid non-handlers, their response to handlers is very differ-
ent (Fig. 4.3; see also Supplementary Material Fig. 3, 5). Kleptoparasites very
rapidly evolve a strong preference for moving towards handlers, which are their
primary resource (Fig. 4.3). In the absence of kKleptoparasites, foragers would
also evolve a similar preference (Fig. 4.1E), but, with kleptoparasites common
in the population, foragers converge upon a handler-avoiding strategy (Fig. 4.3).
This completes the explanation for why consumers do not match landscape pro-
ductivity: foragers evolve strategies to avoid high productivity areas (which are
more likely to have many handlers), while kleptoparasites evolve strategies to
find handlers (which need not be on high productivity cells).

118



gen: 1 gen: 10 gen: 50 gen: 950
iy R X o [x X x x § - |8 X i
2 %xlx % x ¥ " < s w 5
x & 3%
X - X x " % &
X % ¥ x x - Ll
¥ X 2 x5 X% x‘ » %
)x xR Ay x e 2 ¥ X Y
x 2| | . » |
% X&X 5 x Tl * P 2 % x
X, A x: ¥ h
o xxx,.x E x yx 3% 2 i z xxxxx 2
M 3
# Prey 1 2 3 4 5 # Consumers 1ox 2 x 3 x 4 x5
B . C D
=L 50 2 050
=4 ™ =
i~ ©
° 40 S
81 £ Z 0251
o £ 304 8
£ F3 ¢
E ] 8 ¢ 000
< =204 2
- 3 2
o4 < 4 -0.254
© 104 H*
= S
24 0 O -0.50 1
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
Generation Generation Generation
= Searching for prey = Handling prey —— Attempting to steal % Kleptoparasites O Foragers A  Klept

Figure 4.2: Eco-evolutionary implications of the coexistence of foragers and kleptopara-
sites following fixed competition strategies in scenario 2. (A) Populations with both foragers
and kleptoparasites drastically deplete the initially well-stocked resource landscape by gener-
ation 10; however, prey densities recover strongly by generation 50, even beyond the densities
in generation 1. (B) A surprisingly stable equilibrium between the forager and kleptoparasite
strategies is reached within 30 generations, with the relative frequency of kleptoparasites (orange
line) first dropping to very low levels but later recovering to reach a high level (~ 70%) in all three
replicates. Consequently, at equilibrium, only about 10% of individuals are foragers searching
for prey, 50% are kleptoparasites attempting to steal from handlers, and 40% are handlers pro-
cessing prey-items (either foragers or kleptoparasites). (C) When kleptoparasites are rare, the
population intake rate exhibits the same pattern as in scenario 1, dropping to a lower level with
the emergence of kleptoparasites. Naturally, there is an increase in the proportion of time spent
on stealing attempts (red line — B), and a corresponding decrease in prey seeking (by searching
foragers; blue line - B), and handling (green line - C). (D) Neither foragers nor kleptoparasites
follow the input matching rule, and the correlation of their abundance with cell productivity ris
zero at equilibrium. Panel A shows a single replicate, while B, C, D and D show three replicates
with log-scaled X-axes; all panels are for r,,,, = 0.01.

Scenario 3: Condition-dependent Kleptoparasitism

When individuals are allowed to choose their competition strategy (foraging
or kleptoparasitism) based on local environmental cues, the distribution of prey-
items is substantially different from the two previous scenarios (Fig. 4.4A). Ini-
tially, individuals deplete the resource landscape of prey-items within ten gen-
erations. By generation 50, the resource landscape recovers some of the spatial
structure of early generations, but prey-item abundances do not match the recov-
ery seen in scenario 2. This is because unlike scenario 2, individuals search for
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Figure 4.3: Rapid divergence of movement strategies between foragers and kleptoparasites
inscenario 2. In scenario 2, kleptoparasites rapidly diverge (within 10 generations) from foragers
in their movement strategy, clustering around sH = 1.0: a handler-tracking strategy. This strategy
is stably maintained throughout the simulation (G = 100, 300, 950). Foragers retain substantial
diversity in movement strategies for many generations (see G = 100), but unlike scenario 1, tend
to be repelled (relative sH < 0), as well as attracted to handlers (relative sH > 0). Over time, foragers
adopt a strategy that helps them avoid all other individuals (G = 300, 950). A few individuals
sporadically adopt a movement strategy associated with the opposite competition strategy; this is
most likely due to mutations in the competition strategy, rather than a new movement morph
within either foragers or kleptoparasites. At the evolutionary equilibrium then, social information
(either sH or sN) is the strongest component of all individuals’ movement strategies. All panels
show 2,500 individuals (25% of total) from the same simulation replicate (r,,,, = 0.01), and earlier
generations are ancestors of later generations.

prey more often and steal less (at or below 25%; compare Figs. 4.4B and 4.2B),
preventing a full recovery of the resource landscape. Consequently, mean per-
capita intake stabilises (after an initial spike, as in scenarios 1 and 2) within ten
generations to a level similar to scenario 1 (Fig. 4.4C). While not as strong as
predicted by IFD theory, the correlations between consumer abundance and cell
productivity are weakly positive (Fig. 4.4D).

The weak input matching is likely because all individuals prefer to move up
gradients of prey density, and towards handlers, which are more likely to be found
on resource peaks (Fig. 4.4E; see also Supplementary Material Fig. 4, 7). Using
conditional foraging strategies, individuals are able to switch between resource
types (prey and handlers) depending on which is more profitable (Emlen 1966)
(‘opportunistic kleptoparasitism’; Fig. 4.4F; see Supplementary Material Fig. 6).
All individuals would choose to steal when handlers are present, even when prey
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items are more common. Indeed, about 40% of individuals would choose to
steal even when prey are abundant and there are no handlers at all, showing
the prevalence of a ‘fixed kleptoparasite’ clade similar to scenario 2. In a further
parallel with scenario 2, about 70% of individuals have an intrinsic bias towards
kleptoparasitism, i.e., they would by default attempt to steal when there are no
cues to inform their decision (Fig. 4.4F: P=0, H=0).

Movement Strategies on Depleted Landscapes

Orienting movement towards resources (Nathan et al. 2008: where to move) can
be a challenge in a system with low densities of discrete prey-items, because the
local prey density may provide very limited information about local productivity.
In our model, prey-depletion leads parts of the resource landscape to become
‘clueless regions’ (Perkins 1992), where foragers cannot make directed movements
based on prey-item abundances alone, as all neighbouring item abundances
are identical (see white areas in Fig. 4.5A; Al: scenario 1, A2: scenario 2, A3:
scenario 3). At the beginning of all three scenarios, about 75% of landscape cells
have a different number of prey-items from the cells around them; these are
primarily cells with an intermediate r, which have more prey than peripheral cells
of resource peaks, but fewer prey than the central cells. This proportion rapidly
declines to a much lower value within 10 generations in all three scenarios.

The ‘cluelessness’ of the landscapes develops differently across scenarios on
evolutionary timescales (Fig. 4.5B). In scenario 1, the proportion of cells with a
different number of items in the neighbourhood is initially very high (Fig. 4.5A1).
This proportion rapidly declines to ~25% within 10 generations, as foragers de-
plete most prey-items, making most of the landscape a clueless region. In this
context, foragers evolve to move towards handlers, with > 75% of individuals
showing a preference for handlers within 100 generations (Fig. 4.5B1). Forager
preference for handlers may be explained as the sensing of a long-term cue of
local productivity. Since handlers are immobilised on the cell where they find
a prey-item, handler density is an indirect indicator of cell r, and due to spatial
autocorrelation, also of the r of bordering cells.

Scenario 2 landscapes develop similarly to scenario 1 in early generations
(Fig. 4.5A2). However, within 50 generations, most cells bear items as extraction
is reduced, with differences among cells according to their r (see also Fig. 4.2A).
Thus > 75% of cells have a different number of items from neighbouring cells
(Fig. 4.5A2 - panel gen: 50, 5B2). Unlike scenario 1, the rapid increase in handler
preference is driven by kKleptoparasites becoming the majority strategy (see above).
Scenario 3 is similar to scenario 2, except that only about half of all cells have a
different number of prey-items from neighbouring cells (Fig. 4.5A3, 5B3). Here,
the rapid evolution of a handler preference in movement decisions cannot be
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Figure 4.4: Eco-evolutionary implications of conditional foraging strategies in scenario
3. (A) The initially well-stocked resource landscape is rapidly depleted within 10 generations,
yet within 50 generations, prey abundances recover on many cells, though not to the extent
of scenario 2. The local density of individuals on occupied cells is shown as coloured crosses.
(B) By generation 30, the proportion of time spent searching (blue line), handling (green line),
and stealing prey (red line) reach an equilibrium that differs somewhat across replicates, but
(C) the total intake of the population reaches the same equilibrium value in all three replicates.
(D) The correlation between the local density of individuals on a cell, and its productivity r is
stronger than in scenario 2. (E) From an initially high diversity of movement strategies, there is a
rapid convergence (within 30 generations) of all individuals to strongly prefer moving towards
successful foragers, or handlers, nearly to the exclusion of all other movement cues. This handler-
tracking strategy once established is maintained (Gen = 300, 950). (F) Population competition
strategies are more varied. While most individuals will choose to forage as prey density increases,
about 40% of individuals attempt to steal even when prey is abundant and handlers are scarce.
All individuals will steal when handlers are available. Panels A, E show a single replicate, while B,
C and D show three replicates, F shows the mean across replicates; all panels are for r,,,, = 0.01.

assigned a clear cause, since handlers are both a potential direct resource as well
as indirect cues to the location of productive cells.
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Figure 4.5: Uninformative prey densities and the evolution of social information as an
alternative movement cue. (A1, A2, A3) On cells coloured green, local prey densities are
informative for movement, as the central and neighbouring cells have different prey densities.
While differences in local prey densities provide informative cues for ‘adaptive’ movement in
early generations, this is much less true once the resource landscape is depleted of prey-items
(depending on the scenario). (B1, B2, B3) The proportion of cells where differences in local prey
densities provide informative movement cues (green line), and the proportion of individuals
preferring to move towards handlers (blue line), whose presence may be used as an alternative cue
for movement towards higher-productivity areas of the landscape. In (B2) representing scenario
2, this proportion is shown separately for foragers (blue line) and kleptoparasites (red line). While
panels in (A) show a single representative replicate for r,,,, = 0.01, panels in (B) show three
replicates.

Effect of Landscape Productivity

The prey-item regrowth rate that characterises the peaks of the resource land-
scape (r,,4,) is @ measure of the productivity of the resource landscape overall.
Having thus far focused on scenarios with r,,,, = 0.01 (corresponding to a peak
production of 4 food times per consumer lifetime), we find that, not unexpect-
edly, the value of r,,,, has a marked effect on evolved population activity budgets,
mean per capita intake, and even evolved strategies. The frequency of foraging
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reduces with r,,,, in scenarios 1 and 3; this is caused by more frequent acquisition
of prey-items (as regrowth keeps pace with depletion), which results in a greater

frequency of handling rather than foraging.

In scenario 2 however, the frequency of handling is relatively unaffected by in-
creasing r,,,, (Fig. 4.6A). The difference between scenarios 2 and 3 has to do with
the change in the frequency of kKleptoparasitism (Fig. 4.6B). In scenario 2, klep-
toparasitism forms > 75% of all activities at low r,,,,., and is much more common
than in scenario 3 populations at the same regrowth rate. However, at relatively
high r,,,. (0.03), the fixed kleptoparasitic strategy goes extinct. This is because at
high r,,,,., forager-prey encounters are more common than kleptoparasite-handler
encounters, in both early (< 10) and later generations (> 50). Consequently, klep-
toparasites have relatively much lower fitness than foragers, and do not proliferate.
Thus at high r,,,., a scenario 2 population is nearly identical to a scenario 1 popu-
lation; while some kleptoparasites may be seen in later generations, these occur
most likely due to ephemeral mutations in the forager strategy.

In scenario 3, kleptoparasitism persists at low frequencies even at the highest
regrowth rates (Fig. 4.6B); thus some foragers lose time in extracting items which
are then stolen from them. Consequently, while populations in all three scenarios
achieve very similar mean per-capita intakes at low r,,, ..., at intermediate regrowth
rates (0.01, 0.02), conditionally kleptoparasitic populations achieve a higher
mean per-capita intake than populations using fixed strategies. Only at high r,,, ..,
when fixed strategy populations effectively convert to purely forager populations,
do they achieve a higher intake than conditional strategy populations (Fig. 4.6C).

Contextualising the Outcomes of the Kleptomove Model

Our spatially-explicit individual-based model implements the ecology and
evolution of movement and foraging decisions, as well as resource dynamics, in
biologically plausible ways, and offers a new perspective on the distribution of
animals in relation to their resources under different scenarios of competition.
First, individuals moving with a limited perception range and competing only by
exploitation, evolve movement strategies for both direct and indirect resource
cues (prey-items and handlers, respectively). Regardless, on a resource landscape
with discrete prey-items, large areas may become devoid of any movement cues,
leading to a mismatch between individual distribution, prey-item distribution,
and landscape productivity. Second, interference competition in the form of
kleptoparasitism rapidly establishes itself on landscapes where stealing is more
time-efficient than searching for prey, even when such interference is a fixed
strategy and kleptoparasites cannot forage for prey. This rapid increase in klep-
toparasitism as a strategy is accompanied by the divergent evolution of movement
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Figure 4.6: Landscape productivity strongly affects scenario outcomes. (A) The proportion
of time spent searching for food decreases with increasing r,,,, in scenarios 1 and 3 but remains
relatively stable within scenarios. This is partly due to a higher proportion of time spent handling
at higher prey densities. (B) The proportion of time spent searching for handlers (in order to steal
prey from them) also decreases with increasing r,,,.. In scenario 2, kleptoparasites go extinct
for r,,,. values above 0.025. (C) At low productivity, the average intake is similar in all three
scenarios. For higher r,,,, values the average intake rate is lowest in scenario 2, until r,,,, is larger
than 0.025 and kleptoparasites go extinct (leading to the same kind of population as in scenario 1).
At high r,,,,, the average intake rate in populations with conditional kleptoparasites (scenario 3)
is substantially lower than in populations without kleptoparasitism. All panels show conditions at
G =1,000; error ranges where present show standard deviation around values; some error ranges
are too small to be visible.

strategies that favour moving towards handlers, which are the primary resource
of the kleptoparasites. In this sense, obligate kleptoparasites may be thought of as
forming a higher trophic level, with handlers as their prey. Third, when foraging
strategy is allowed to be conditional on local cues, (1) the population’s mean per
capita intake is significantly higher than that of a population with fixed strategies,
and (2) unlike fixed strategy populations, kleptoparasitism as a strategy does
not go extinct on high-productivity landscapes. However, across scenarios, indi-
viduals are broadly unable to match the productivity of the resource landscape,
contrary to the predictions of IFD based models, which predict input matching
for some (Parker and Sutherland 1986; Holmgren 1995; Hamilton 2002), or all of
the competitive types (Korona 1989).

Comparison with Existing Models

Existing models of competition and movement impose fixed movement rules
on individuals to mimic either ideal or non-ideal individuals (Vickery et al. 1991;
Amano et al. 2006; Cressman and Ktivan 2006; Beauchamp 2008; Stillman and
GossoCustard 2010; White et al. 2018b). When individual competitive strategies
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are included in models, they represent differences in competitive ability (e.g.
Parker and Sutherland 1986; Holmgren 1995; Hamilton 2002), or a probabilistic
switch between producing and scrounging (Beauchamp 2008). In contrast, our
model allows individuals’ movement (and competition) decisions to be adaptive
responses to local environmental cues. Similar to Getz et al. (2015; 2016) and
White et al. (2018b), our individuals choose from among the available movement
options after weighing the local environmental cues, similar to step selection
functions (Fortin et al. 2005; Avgar et al. 2016; White et al. 2018b). Local environ-
mental cues are constantly changing, as we model discrete, depletable prey-items,
contrasting with many IFD models (Tregenza 1995; Amano et al. 2006). This
allows for a more plausible, fine-scale consideration of exploitation competition,
which is often neglected, and allows the cues sensed by individuals to strongly
structure the distribution of competitors (see below).

Adaptive responses must have an explicit evolutionary context, and consider
multiple generations of the population. We follow Beauchamp (2008) and Getz
et al. (2015) in allowing the cue preferences that decide movement, and varia-
tion therein, to be the outcomes of natural selection. However, instead of using
‘evolutionary algorithms’ (Beauchamp 2008; Getz et al. 2015; 2016) to ‘optimise’
individual movement rules, we consider a more plausible evolutionary process:
(1) Instead of allowing the fittest 50% of the population to replicate, the number
of offspring are proportional to individual fitness. (2) The cue preferences are
subject to mutations independently, rather than subjecting all preferences of an
individual to simultaneous mutation. (3) Finally, we avoided ‘simulated anneal-
ing’, which adapts the mutation rate or the mutational step sizes to the rate of
evolutionary change. Instead we drew mutation sizes from a Cauchy distribution,
so that most mutations are very small, but large-effect mutations do rarely oc-
cur throughout the simulation. Similarly, rather than determining competition
strategy probabilistically or ideally (Vickery et al. 1991; Beauchamp 2008; Tania
et al. 2012), our individuals’ competition decisions are also shaped by selection
(in scenarios 2 and 3).

Evolution of Movement Strategies Using Social Information

In scenario 1, depletion of discrete prey can leave many areas empty of prey-
items: in such areas, movement informed by a resource gradient is impossible,
and individuals may move randomly (Perkins 1992). This lack of direct resource
cues for locally optimal movement might be among the mechanisms by which
unsuitable ‘matrix’ habitats modify animal movement on heterogeneous land-
scapes (Kuefler et al. 2010). When individuals do not sense resource gradients,
the presence of more successful conspecifics may indicate a suitable foraging
spot (local enhancement; Giraldeau and Beauchamp 1999; Beauchamp 2008;
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Cortés-Avizanda et al. 2014). The presence of unsuccessful individuals, mean-
while, may signal potential costs from exploitation or interference competition.
This selects for movement strategies incorporating the presence and condition of
competitors into individual movement decisions, or social movement strategies
(see e.g. Guttal and Couzin 2010). Consequently, consumer aggregation — often
explained by invoking external costs such as predation (Krause and Ruxton 2002;
Folmer et al. 2012) — could also be the outcome of movement strategies that
have evolved to trade competition costs for valuable social information on the
underlying spatial structure (here, r) of uninformative landscapes (Folmer et al.
2010; Cortés-Avizanda et al. 2014).

Individual Variation in Movement Strategies

Our movement strategies, comprising preferences for local ecological cues,
may lead individuals to move in ways that are potentially unique to each individ-
ual. These strategies may not maximise their intake over short timescales (a few
timesteps), but their coexistance implies equivalent fitness overall. This makes
them consistent with prevalent ideas about consistent individual differences in
behaviour, or ‘animal personalities’ (Wolf and Weissing 2012; Laskowski and Bell
2013; Spiegel et al. 2017; Shaw 2020). In scenario 1, the persistence of multi-
ple movement strategies across generations indicates that they have equivalent
fitness (see Getz et al. 2015), and that there are multiple ways to navigate a het-
erogeneous environment (Wolf and Weissing 2010; Shaw 2020). Such differences
may help reduce competition as individuals make subtly different movement de-
cisions when presented with the same cues (Wolf and Weissing 2012; Laskowski
and Bell 2013). Interestingly, scenario 3 has the least individual variation in
movement rules, presumably because plasticity in competition strategy reduces
the need for such diversification (Pfennig et al. 2010).

Scenario 2 cautions that (1) Individual variation may only be evident when ac-
counting for the main driver of movement decisions (s, or sy; see Supplementary
Material Fig. 8 for scenario 3 as well). (2) Spatial context determines whether
individual differences in movement strategy lead to functional variation in move-
ment outcomes. Subtle variation in relative prey density preferences (sp) could
be revealed if individuals were measured in isolation, and could lead to differ-
ences in movement paths (given a continuous gradient in prey cues). Howevetr, in
natural settings with substantial collective behaviour, different social movement
strategies (correlated with foraging competition strategy) would be the primary
driver of movement. Overall, then, (a) measuring movement behaviour in set-
tings that correspond to animals’ evolutionary context, and (b) accounting for
movement-competition strategy correlations, are both key when studying how
individual differences translate to functional consequences.
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Competition Strategies and the Ideal Free Distribution

IFD models predict that individual movement should result in consumer dis-
tributions tracking the profitability of resource patches (Fretwell and Lucas 1970;
Parker 1978), with dominant competitive types (including kleptoparasites) mo-
nopolising the best patches (Parker and Sutherland 1986; Holmgren 1995; Hamil-
ton 2002), though Korona (1989) predicts otherwise. In scenarios 2 and 3, klep-
toparasitic individuals unsurprisingly and rapidly evolve to track handlers (a
direct resource), while avoiding non-handlers (potential competitors). However,
these evolved rules do not lead kleptoparasites to occupy the best cells as predicted
by Parker and Sutherland 1986, Holmgren 1995, and Hamilton 2002. Across our
scenarios (including scenario 1), local population density is only weakly corre-
lated with cell productivity, and is not stronger than if individuals were moving
randomly (see Supplementary Material Fig. 1). In scenario 2, this departure from
predictions is driven by the contrasting movement rules of foragers, which evolve
to avoid handlers as well as non-handlers, both of which might be kleptoparasites
(cryptic interference; seen in interference-sensitive shorebirds Bijleveld et al.
2012). Thus, foragers likely avoid resource peaks, which are more likely to have
handlers (due to the higher probability of forager-prey encounters Parker and
Sutherland 1986; Holmgren 1995; Hamilton 2002). Fixed kleptoparasites can-
not extract prey themselves, and must move off resource peaks to track and rob
handlers (similar to Parker and Sutherland 1986), breaking the link between indi-
vidual density and productivity. This shows the pitfalls of simplistically linking
current ecological conditions with population distributions without considering
competitive strategies or evolutionary history.

Constraints on Competition Strategies

Foraging strategies involving specialisation on a resource type are expected to
be constrained by the availability of that resource. Thus kleptoparasitism, seen
as a prey-choice problem, should be constrained by the density of targets (Ens
et al. 1990). In scenarios 2 and 3, more Kleptoparasitism should be expected
with increasing r,,,,, as prey and consequently, handlers, are expected to be more
abundant. Instead, kleptoparasitism declines with increasing r,,,,, in line with
Emlen (1966), who predicted that the commoner food type (prey) rather than the
more efficiently exploited one (handlers) should be preferred. This prey choice
problem, playing out at evolutionary scales, leads kleptoparasites in scenario 2
to go extinct when prey are very common at high r,, ... At stable population den-
sities, the persistence of fixed kleptoparasitism depends on their intake relative
to foragers. Modelling discrete prey-items and individuals in a spatial context,
then, leads to the finding that obligate kleptoparasitism is only a viable strategy
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when forager-prey encounters are less common than kleptoparasite-handler en-
counters. Reducing the relative profitability of kleptoparasitism in other ways —
such as imposing a cost on kleptoparasitic attacks for the initiator, or reducing the
probability of success (currently, 1.0) — would also lead to a reduced incidence of
Kleptoparasitism, and eventual extinction even on less productive landscapes. In
scenario 3, about 40% of individuals choose to attempt to steal even when prey
are available and handlers are not. This suggests a more realistic proportion of
consistently Kleptoparasitic individuals among populations with flexible foraging
strategies. Many seabirds, which forage for prey when they are super-abundant,
but also readily harass other birds for prey, are a good example (Brockmann and
Barnard 1979). Finally, comparing across regrowth rates shows why possibly
cryptic behavioral complexity should be considered in predictions of the long-
term effect of environmental change on populations. While both scenario 1 and
2 populations appear identical at high r,,,,, even a small decrease in environ-
mental productivity could lead to an abrupt drop in per-capita intake — and
potentially, strongly reduced growth or survival — for fixed strategy populations
due to unexpected, emergent kleptoparasitism.

Comparison with Conceptual Models

Classical models of animal movement and foraging largely consider homoge-
neous populations and environmental conditions, and movements that are made
either optimally or at random. While these models provide powerful insights,
individual-based models such as ours have the advantage that they can accommo-
date individual variation, local environmental conditions, and the mechanisms
of movement and decision-making. Individual-based modeling has the obvious
drawback that numerous specific assumptions have to be made, which might
not all be founded on empirical evidence, and might seem to limit the generality
of the conclusions. Nevertheless, as long as these models are not mistaken for
attempts at faithful representations of real systems, their exploration provides
valuable perspectives on the conceptual models that have dominated theory in
the past. After all, traditional models also include numerous assumptions (the
spatio-temporal structure, the timing of events, the distribution and inheritance
of traits) that are usually not stated and therefore less visible. For the future, we
envisage pluralistic approaches, where both types of model are applied to the
same research question. Only comparing the outcomes of diverse models will
reveal which conclusions and insights are robust, and which reflect peculiarities
of the model structure. Only such model comparison can tell us whether and
when simple models produce general insights, where simple models fail, and
when mechanisms can explain initially counterintuitive observations, such as
the attraction to competitors that we observed in our study.
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Roles for Individual-Based Models in Animal Movement Ecology

Linking individual-based models with empirical data is difficult, and is still
rarely used (see works tailored to management: Stillman and GossoCustard 2010;
Diaz et al. 2021). Animal tracking technology is only on the cusp of allowing us to
track entire populations (though small ones), and classifying their behaviour at
the fine temporal scales of animal decision-making Nathan et al. in press. Science;
see e.g. Lieber et al. 2021; Sankey et al. 2021. Classifying dyadic and collective be-
haviour from animal tracking is especially challenging (Sankey et al. 2021; Vissat
et al. 2021); this makes the detection of rapid competitive interactions in large
populations unlikely. Instead, experimental approaches may reveal movement
strategies that reduce competitive interactions (Vahl et al. 2005a,b; Rutten et al.
2010a; Bijleveld et al. 2012). However, consistent behaviour in cue-poor captive
environments does not always translate to consistency in natural settings with
abundant resource cues (Carter et al. 2013a).

Animal movement ecology takes an explicitly individual-based approach, cen-
tred around individual decisions (Nathan et al. 2008). This makes individual-
based models a good choice when seeking general insights into the evolutionary
ecology of animal movement strategies (see e.g. Getz et al. 2015), whose ulti-
mate causes are otherwise difficult to study empirically. Modelling mechanistic
movement decisions has substantial consequences for ecological outcomes (e.g.
Mueller et al. 2011; White et al. 2018b; Scherer et al. 2020), yet few individual-
based models in animal movement are mechanistic (see review in: DeAngelis
and Diaz 2019), and even fewer models include evolutionary dynamics (but see
Getz et al. 2015; 2016; Netz et al. 2021b). Yet explicitly modelling both ecological
interactions and evolutionary dynamics, as we do here, can reveal surprising
outcomes ranging from innovative predator-prey strategies (Netz et al. 2021b) to
sympatric speciation (Getz et al. 2016).

The use of resource- and step-selection functions in mechanistic modelling
(see White et al. 2018b) gives empirical movement ecologists a familiar starting
point in individual-based modelling. Simulating an animal’s potential space-use,
conditional on environmental data (similar to our cues), and using selection coef-
ficients estimated from tracking data (our cue preferences), is already accepted
in movement ecology, and follows our grid-based approach (Avgar et al. 2016;
Signer et al. 2019; Avgar et al. 2020; Fieberg et al. 2021). It is relatively easy to
implement movement decisions in continuous space, by sampling cues at dis-
crete locations and (1) choosing among them, or (2) translating these cues into a
movement distance and turning angle. The second approach would require more
complex functions with more coefficients (preferences), such as neural networks
(Mueller et al. 2011), and this could make it difficult to interpret the evolved
movement strategies. Models could implement survival and reproduction (the



key ingredients of natural selection), as well as other demographic processes, and
reproduction and inheritance can be incorporated in a more realistic manner.

We call for a substantial increase in mechanistic, evolutionary, individual-based
modelling in animal movement ecology. Adding realistic ecological and evolution-
ary dynamics on top of current empirical work is key to transforming movement
ecology into a more applied, predictive discipline. For example, by allowing habi-
tat selection coefficients from animal-tracking studies to undergo even short-term
selection on projected landscapes from climate modelling, such models could
help explore population changes in movement strategies. This approach would
require very accurate estimation of the fitness outcomes of movement — no easy
task. Consequently, individual-based models are not (yet) intended to be ‘fit’
to empirical movement data. Rather, they can provide valuable perspective on
existing population-level models, and could be used to define the envelope of
possibilities for how movement strategies could evolve in dynamic environments.



Supplementary Information
for Chapter 4

Evolutionary Ecology of Random Movement

We ran our model on a fourth scenario: random movement. In this scenario,
the landscape is set up as in our first three scenarios (see Figure panel A). The
prey-item handling dynamics are the same as well, and if individuals, which
can choose their competition strategy depending on environmental conditions
(as in scenario 3), ever encounter a handler and choose to steal from it, they
can do so. Individuals have heritable, evolving preferences for environmental
cues, as in all our previous scenarios. The major change in this scenario is that
individuals cannot actually perceive any environmental cues, and are essentially
then, moving to random locations in their neighbourhood. This scenario serves
as a useful null model for what one should expect when directed movement is
not possible, or has no bearing on fitness.

1. In contrast to scenario 1, the resource landscape regenerates much more
strongly, suggesting that despite the paucity of movement cues in scenario
1, foragers are still capable of finding their way to isolated prey-items, and
consuming them (panel A).

2. This scenario reveals that directed movement is, understandably, abso-
lutely key to kleptoparasitism. When individuals cannot move towards
handlers, the low density of foragers on the landscape, only some of which
will be handling an item at any one time, means that encountering a han-
dler is essentially impossible. As expected then, the number of stealing
attempts drops to zero within only three generations, and all individuals
thereon are foragers (panel B).

3. Despite being unable to move towards resources, the population’s mean
intake is comparable to scenarios 1 and 3, and actually higher than in
scenario 2. This highlights the cost that fixed-strategy kleptoparasitism
imposes at a population wide level (panel C).

4. The near-zero correlation between consumer abundance and resource pro-
ductivity is unsurprising (panel D). Nonetheless, it shows that regardless



of whether individuals are moving with (relatively) sophisticated move-
ment strategies, or at random, they are very far from following the ideal
free distribution’s input matching rule. This also confirms the true cost of
resource landscape depletion in scenario 1: the loss of prey-item gradients
with which to orient movement leaves individuals navigating a clueless
landscape, on which they simply cannot find the way to areas of high pro-
ductivity.

5. Finally, the evolution of movement strategies, when they are not actually
under selection, supports our findings of strong selection on movement in
the first three scenarios (panel E).

Effect of Local Dispersal

In order to focus on adaptive movement strategies, we chose to implement
large dispersal distances in our default simulation setup, which we refer to as
‘global’ natal dispersal. Under global dispersal, offspring are homogeneously
distributed over the entire landscape (dispersal radius = 512). Our results are
not changed in any way when dispersal is much more strongly localised, which
we refer to as simply ‘local’ natal dispersal. In this implementation, the natal
dispersal distance is comparable in magnitude as the distance between resource
peaks. If offspring dispersal is more local, the spatial population dynamics may
become more intricate, and kin competition or local adaptation may become
influential. We therefore ran the simulations presented in the main text also
under local dispersal (dispersal radius = 2).

In summary, scenarios 1 and 3 yield similar results under local as under global
dispersal, while scenario 2 shows some interesting dynamics typical of reaction-
diffusion systems. In scenario 1 (see Fig. S13), the resource landscape plots A,
the activity budget and intake plots B and C, as well as the evolved movement
strategies E exactly match the simulation results shown in Figure 1 of the main
text. Only the correlations between number of foragers and cell productivity
are higher under local dispersal than under global dispersal (panel D). This is
a straightforward consequence of local dispersal, where individuals occurring
on more productive cells have a higher intake rate and therefore produce more
offspring than individuals on less productive cells. Thus, under local dispersal
many agents already start out on more productive cells. This does not seem to
impact movement strategies. The same is true for scenario 3 (Fig. S14): After
the initial depletion of the landscape, kleptoparasitic behavior spreads, and the
landscape is somewhat replenished again. Also here, the landscape snapshots,
the activity budget, as well as the intake plot and the evolved movement strategies
match the global dispersal case. The difference in competition strategy (panel F)
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Figure 4.7: The evolutionary ecology of random movement serves as a useful baseline
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corresponds to the observed bistability (compare Main Text Fig. 6). Again, the
correlation between number of foragers and cell productivity is higher under local
dispersal than under global dispersal, in the latter averaging in late generations
around 0.1, and in the former around 0.2.

Scenario 2 is the only one where we observed a marked difference between local
and global dispersal (see Fig. S15). As soon as Kleptoparasites occur, they spread
and become locally abundant, driving foragers to local extinction. The Kleptopar-
asites themselves then wither away due to a lack of foragers to steal from, after
which foragers may colonize the area once again. This spatial instability repeats
itself over wide parts of the landscape, driven by the extinction, recolonization
and diffusion of foragers and kleptoparasites. Kleptoparasites and foragers here
effectively form a reaction-diffusion system. Snapshots of this dynamic pattern
can be seen in Fig. S15A. As a consequence, the proportions of kKleptoparasites
and foragers, as well as the total per capita intake of the population fluctuate
widely (panels B and C). The correlations between individual densities and cell
quality lie around zero and are therefore not much different from the results
observed under global dispersal (Main Text Fig. 2D). An interesting contrast with
global dispersal is to be found in the movement strategies. While kleptoparasites
have similar preferences under global and local dispersal, foragers have much
stronger item preferences under local dispersal. Due to the pattern of extinction
and recolonization under local dispersal, there are parts of the landscape not only
rich in food items, but also free from kleptoparasites, and thus a strong preference
for items becomes beneficial.
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Figure 4.8: The effect of strongly localised dispersal in scenario 1. (A) Foragers swiftly deplete
the resource landscape and maintain item scarcity throughout the rest of the simulation, just
like under global dispersal. Items and agents are distributed in proportion to cell productivity, r.
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dispersal. (E) The same wide range of movement strategies observed under global dispersal exists
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Figure 4.9: The effect of strongly localised dispersal in scenario 3. (A) Individuals swiftly
deplete the resource landscape, but prey abundances recover with the rise of kleptoparasitism,
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productivity, r. (B) By generation 30, the proportion of time spent searching (blue line), handling
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slightly, identically to global dispersal. (D) The number of foragers per cell is more positively
correlated with cell productivity under local than under global dispersal. (E) Movement strategies
concentrate around a strong preference for handlers, and (F) individuals tend to steal even when
there are no handlers and less than 3 prey items available. This falls into the range of variation
observed between replicates under global dispersal.

137



gen: 1 gen' 10 gen: 50 gen 950
s R A m (E] ERRRERRERRE =

: | i
5 :ﬁ;@ xw :

3
{ 1]
QQ
i
4 Gl G
1] #
o & 1
®i
ga

]

f:‘x dl'
%

ﬁgw :;%%; g %ﬁ #5“
% %

yg Forl o SR i
T & v ws& :
Foesn i?eﬁ,wdwﬂ St 52% »&xw »Ru

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
X

HDPREE

# Prey 1 2 3.4.5 #Consumers -~ 1 - 2 ~ 3 =« 4

B 2 C D,
S @ 50 = 050
= >3 s
[o]
R E 404 s
o1 = o 0257
o i) o [=e]
E = 5301 ? 83
E 31 3 % 0.00 X
< % 201 =
S o 2 4251
& S 104 ® o
o] o o
£
2 = § 0501 o
1 3 10 30 1003001000 1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
Generation Generation Generation
—— Searching for prey —— Handling prey —— Attempting to steal % Kleptoparasites
E sN: Non-handler preference s |
Avoid Prefer
Gen =30 Gen = 950
51 9
2 o
[ G B
Q <
Q o @ o 38
2 I3
@
$ 3
o 2
a <
.
() o
k<] 2
5 2 g
a
= =
&
I g
° ~
5 €
S
E9

Neutral Prefer Neutral Prefer Neutral Prefer
sP: Prey-item preference

Figure 4.10: The effect of strongly localised dispersal in scenario 2. (A) Foragers initially
deplete prey items, but with the rise of kleptoparasistism, the resource landscape becomes very
heterogeneous, with some areas densely populated and scarce in prey items, and others without
consumers and fully stocked with items. This pattern is produced by the local dynamics of
kleptoparasites and foragers: Kleptoparasites become more common where foragers are common,
until the latter go locally extinct. Thereupon also the kleptoparasites vanish, and prey items
replenish until foragers are reintroduced via diffusion. (B) Proportions of kleptoparasitses and
foragers, as well as (C) mean per-capita intake fluctuate greatly. (D) Cell quality and number
of individuals are uncorrelated as the spatial dynamics between kleptoparasites and foragers
dominate over any interaction between cell quality and number of individuals. (E) Kleptoparasites
evolve the same preferences under local dispersal as under global dispersal, but foragers have
a much stronger preference for prey-items, caused by the abundance of deserted, fully-stocked
parts of the landscape.
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Interlude C

Details Matter When Modelling the Effects of Animal Personality on the
Spatial Distribution of Foragers

Christoph F.G. Netz!, Aparajitha Ramesh!, Jakob Gismann!, Pratik R. Gupte,
and Franz J. Weissing®

A This text is adapted from Netz et al. (2022b), now published in Proceedings of
the Royal Society B: Biological Sciences as “Details Matter When Modelling the
Effects of Animal Personality on the Spatial Distribution of Foragers.”

By means of a simulation study, DiNuzzo and Griffen! investigate whether
individual variation in a personality trait can explain “undermatching”, an often-
observed deviation from the ideal free distribution (IFD). Here we raise five points
of concern about this study, regarding (i) the interpretation of the results in terms
of personality variation; (ii) deficiencies in the technical implementation of the
model, leading to wrong conclusions; (iii) the effects of population size on devi-
ations from the IFD; (iv) the measure used for quantifying deviations from the
IFD; and (v) the analysis of the mud crab data. Finally, we give an outlook over
the evolutionary ramifications of the relation between animal personality and
the IFD.

Personality Variation and the IFD

The individuals in DiNuzzo and Griffen’s model tend to maximize their intake
rate. At each point in time, they are perfectly informed about the distribution
of resources (which remains constant) and the distribution of foragers (which
can change due to movement). Individuals differ in “activity”, that is the rate
at which they recognize that their current intake rate is suboptimal; once they
observe a discrepancy, they move instantaneously to the habitat patch yielding
a maximal intake rate. In this model, each individual has to move at most once:
if all individuals have moved (or stayed at their initial position, as this already
yielded a maximal intake rate), the IFD is reached. It is therefore obvious that less
active individuals that, by definition, take on average more time steps for making
a movement decision, retard the approach of the population to the IFD. Hence,

DiNuzzo, E. R. and Griffen, B. D. (2020), “The Effects of Animal Personality on the Ideal Free
Distribution,” Proceedings of the Royal Society B: Biological Sciences, 287/1934: 20201095.



it is also obvious that the “time to reach IFD” increases with an increase of the
proportion of inactive individuals. In other words, it is not personality variation
per se that retards the approach to the IFD, but rather the presence of inefficient
movers.

Problems with the technical implementation of the model

Above we argued that it is obvious that the “time to reach IFD” increases with
the proportion of inactive individuals. In view of this, it is surprising that DiN-
uzzo and Griffen report a hump-shaped relationship in one of their simulation
scenarios (their Figure 4E) and even a monotonic decline of the time to reach IFD
with the proportion of inactive individuals in case of a type II functional response
(their Supplementary Figure S1, reproduced here in Figure C-1A). We think both
results are artefacts. The pattern in Figure S1 is caused by a comparison between
intake rates calculated with different formulas. As a consequence, individuals
can “believe” that they are already in a habitat maximizing their intake rate, while
really they are not. In addition, an incorrect formula of a ratio-dependent func-
tional response type 2 is used (following Abrams and Ginzburg 2000)?. A detailed
explanation of these mistakes can be found in our Supplementary Information. If
these mistakes are corrected, the time to reach IFD shows the expected declining
trend with the proportion of inactive individuals (fig. 1B), rather than the increas-
ing trend reported in Figure S1. Hence, a saturating type II functional response
leads to a similar relationship between the proportion of active consumers and
time-to-IFD as an unlimited linear (type I) functional response. Special explana-
tions for discrepancies between type I and type II models (the “domino effect”
explanation in Supplementary Information 1.4 of DiNuzzo and Griffen 2020) are
not needed and are actually misleading.

We can further show by a simple mathematical argument that the correspon-
dence between the two model variants considered by DiNuzzo and Griffen should
be even stronger: the special version of the type II functional response used by
DiNuzzo and Griffen (following Abrams and Ginzburg 2000) should lead to exactly
the same time-to-IFD and the same consumer distribution over patches as their
type I functional response. We were therefore surprised our Figure C-1B does
not exactly match Figure 3 in (DiNuzzo and Griffen 2020): it generally takes 100
time steps longer to reach the IFD. Rerunning the scenario underlying Figure 3 in
(DiNuzzo and Griffen 2020) with DiNuzzo and Griffen’s published NetLogo code,
we obtained an exact replicate of our Figure C-1B. We conclude that DiNuzzo and
Griffen must have used a different version of their simulation program to produce
their Figure 3.

Abrams, P. A. and Ginzburg, L. R. (2000), “The Nature of Predation: Prey Dependent, Ratio
Dependent or Neither?” Trends in Ecology & Evolution, 15/8: 337-41.

140



In addition, the simulation program in (DiNuzzo and Griffen 2020) produces a
substantial bias in reported time to reach the IFD. Each simulation run stops once
movement has ceased for 50 time steps, assuming that this is a clear indication
that the IFD has been reached. The problem is that movement can cease for
longer time periods even in situations where the population is still far from an
IFD (Figure C-2A). This easily happens in populations with a large proportion of
highly inactive individuals: the lack of movement of these individuals may just
reflect the reluctance of these individuals to move (rather than having reached a
habitat with maximal intake rate, where movement is no longer necessary).

Figure C-2 shows two replications of Figure 4E in DiNuzzo and Griffen (2020),
one with the published NetLogo code (Fig. 2B) and a second with an improved
version (see Supplementary Information) where DiNuzzo and Griffen’s stopping
criterion is replaced by a check whether the IFD has indeed been reached (Fig.
2C). It is obvious that the stopping criterion has a large effect on the simulation
outcome. Notice that neither outcome shows the puzzling “hump” in Figure 4E in
(DiNuzzo and Griffen 2020). As we produced Figure C-2B with DiNuzzo and Grif-
fen’s published NetLogo code, we have to conclude again that a different version
of their simulation program was used to derive their Figure 4E. A more detailed
account of the technical issues reported above (and some additional issues) and
corrected versions of the NetLogo program can be found in the Supplementary
Information.
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Figure C-1: Replication of DiNuzzo and Griffen’s Figure S1 (A) using their original NetLogo code
and (B) using a corrected version of their code. Both panels show the time to reach the Ideal
Free Distribution (IFD) for various proportions of “active” (80% activity) and “inactive” (20%
activity) consumers with a type 2 functional response in 1,000 replicate simulations. According
to DiNuzzo and Griffen’s NetLogo code, the time- to-IFD increases with the proportion of active
consumers. A corrected version of the code yields the expected pattern of decreasing waiting
times with increasing proportions of active consumers.
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the IFD after 50 time steps in inactivity in the scenario underlying Figure 4E in DiNuzzo and
Griffen (2020). (B) Replication of Figure 4E, using DiNuzzo and Griffen’s NetLogo code. (C) The
same set of simulations for an improved version of the NetLogo code, where a simulation now
stops when the IFD is actually reached. In all simulations, “active” consumers have an activity
level of 90% while “inactive” consumers have an activity level of 10%.
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Figure C-3: Probability distributions of the time until the ideal free distribution is reached, based
on 1,000 replicate simulations per setting. In a system with 49 habitat patches, the panels show
for four population sizes N how the time to reach IFD depends on the proportion of “active”
(movement rate 0.8) and “inactive” (movement rate 0.2) individuals.

Effects of population size

DiNuzzo and Griffen investigated the effect of population size on the time to
reach the IFD. However, the time scale of their model implementation is quite
different from a ‘natural’ time scale. In their simulation program, individuals
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make decisions sequentially, and only one individual can make a decision in each
time step. As in a larger population more individuals have to take decisions, this
automatically increases the time to reach a certain target. Moreover, the time to
reach the IFD is inflated by the fact that active individuals are restricted in their
movement because they have to “wait” for the inactive individuals. For these
reasons, it is more natural to use a continuous time scale, where individuals take
movement decisions independently of each other, at a rate that is proportional to
their activity level. This can be done in a straightforward manner, by translating
the discrete-time model of DiNuzzo and Griffen into an otherwise equivalent
event-based model (making use of the Gillespie algorithm3 — a description and
implementation of such a model can be found in Netz et al. (2021a)*). Figure C-3
shows how in the event-based version of the model the time to reach the IFD
depends on the population size N and the proportion of active individuals. For
each population size, the time to reach the IFD is, as expected, positively related
to the proportion of inactive individuals. However, the event-based version of the
model does not support DiNuzzo and Griffen’s conclusion that the time to reach
the IFD increases with population size. This only occurs for very low population
densities (N = 8 and N = 40 in Figure C-3), and even in these cases the effect is
small.

At higher population sizes, the time to reach the IFD decreases with population
size: as shown in Figure C-3, the IFD is reached much faster in a population with N
=1000individuals thanin any of the smaller populations. This can be explained as
follows. In case of the low population sizes considered by DiNuzzo and Griffen, the
initial density of individuals is very low (typically only one individual per patch).
In such a case, an individual can only improve its intake rate by moving to a more
profitable patch. In case of a large population size (and a higher initial density per
patch), there is an additional option: if an individual on a patch decides to leave in
order to improve its intake rate elsewhere, all remaining individuals on that patch
profit as their intake rate increases due to alleviated within-patch competition®.
This effect is not addressed by the study of DiNuzzo and Griffen, although the
authors state: “in most natural systems, there are many more consumers than
patches.”

Gillespie, D. T. (1976), “A General Method for Numerically Simulating the Stochastic Time Evolu-
tion of Coupled Chemical Reactions,” Journal of Computational Physics, 22/4: 403-34.

Netz, C. F. G. et al. (2021a), Christophnetz/Time-to-IFD_simulator: Comment to DiNuzzo and
Griffen 2020 - Supplementary Material (version v1.0.0) (Zenodo).

Wolf, M. et al. (2008), “Evolutionary Emergence of Responsive and Unresponsive Personalities,”
Proceedings of the National Academy of Sciences.



Quantifying the approach to the IFD

DiNuzzo and Griffen conducted their study in order to investigate whether
personality differences can explain “undermatching”, the commonly observed
phenomenon that high-resource patches tend to be underexploited while low-
resource patches are overexploited. Yet, they devote only one figure (their Fig-
ure C-2) to this phenomenon. In general, they quantify deviations from the IFD
by measuring the time to reach the IFD. This measure has at least three disad-
vantages. First, “time-to-IFD” is determined by the last individual that moves
to a patch with an optimal intake rate. In other words, a single individual with
very low activity can have a very large effect on time-to-IFD. Second, “time-to-
IFD” depends on the initial conditions; it takes longer to reach the IFD if the
initial distribution of individuals over patches differs a lot from the IFD. Third,
“time-to-IFD” is only a sensible measure when the IFD is actually reached. This,
however, will only be the case in highly standardized simulation models with a
fixed resource distribution. As stated by DiNuzzo and Griffen: “In most systems,
the IFD is a moving target owing to temporal environmental variation and direc-
tional change (i.e. habitat degradation).” In Section 1.5 of their Supplementary
Information, DiNuzzo and Griffen show some simulation results for a scenario
with temporally varying patch quality. Surprisingly, “time-to-IFD” is also used
for this scenario (their Supplementary Figure S2), where it is difficult for us to
understand how the IFD can ever be reached in case of rapid environmental
change. How can movement cease for 50 time steps (the criterion for reaching the
IFD) if the distribution of patch qualities changes completely every 10 or 20 time
steps? Under such changing conditions, we would advocate using a more robust,
population-level measure for deviations from the IFD, such as the variance in
intake rates across patches.

Analysis of the mud crab system

We are puzzled by the fact that DiNuzzo and Griffen revert to a simple calcula-
tion of ratios in their analysis of the refuge use data on the mud crab Panopeus
herbstii® instead of taking advantage of their individual-based model. The model
becomes necessary because such a simple calculation does not suffice, as it ig-
nores the distribution of personality in the population. Hence, Figure 5 illustrates
the influence of personality on the IFD only in the sense that no single crab is
“ideal” in immediately leaving its refuge and moving to the patch with highest
profitability, but not the implications of the distribution of activity levels in the
population. Additionally, the data comes from a special (predation cue) treat-
ment, not from standard conditions; and the crabs differ substantially in size

Toscano, B. J. et al. (2014), “Effect of Predation Threat on Repeatability of Individual Crab Behavior
Revealed by Mark-Recapture,” Behavioral Ecology and Sociobiology, 68/3: 519-27.
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(actually body size is used as a proxy for activity level) and accordingly also in
their resource needs and competitive abilities.

Outlook

We have the impression that DiNuzzo and Griffen view “personalities” mainly
as (maladaptive) deviations from optimal or efficient behaviour. In contrast,
many studies show that personality variation is often shaped by adaptive evo-
lution’. For example, Wolf and colleagues demonstrate that “inactivity” (called
“unresponsiveness”) may be viewed as an efficient strategy in achieving a high
foraging success and approaching an ideal free distribution. An adaptive perspec-
tive on personality variation leads to novel eco-evolutionary questions regarding
the interplay of individual behavioural variation and the spatial distribution of
foragers.

Future research is needed to reconcile the IFD with the eco-evolutionary causes
and consequences of personality for at least two reasons: First, the IFD model pre-
supposes that the resource intake rate is a proxy for fitness®. But how, then, can
different personality types persist at stable proportions, when inactive individu-
als consistently achieve a lower intake rate than their more active conspecifics?
Second, a personality perspective may change what spatial distribution is op-
timal. In animals, differences in activity are usually associated with (adaptive)
differences in energy metabolism®. When foraging individuals differ in energetic
expenditure, they should not only take maximizing the intake rate as their sole
guiding principle!°. In other words, individuals differing in activity should use
different decision rules, and the optimal behaviour of a polymorphic population
may, even at equilibrium, deviate considerably from the IFD of a monomorphic
population.

Wolf, M. and Weissing, F. J. (2012), “Animal Personalities: Consequences for Ecology and Evolu-
tion,” Trends in Ecology & Evolution, 27/8: 452-61.

Tregenza, T. (1995), “Building on the Ideal Free Distribution,” in Advances in Ecological Research,
xxvi (Elsevier), 253-307.

Careau, V. et al. (2008), “Energy Metabolism and Animal Personality,” Oikos, 117/5: 641-53.
Campos-Candela, A. et al. (2019), “A Mechanistic Theory of Personality-Dependent Movement
Behaviour Based on Dynamic Energy Budgets,” Ecology Letters, 22/2: 213-32.
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Supplementary Information for Interlude C

The supplementary material for this interlude may be found online as Sup-
porting Information published along with the manuscript, Netz et al. (2022b),
“Details Matter When Modelling the Effects of Animal Personality on the Spatial
Distribution of Foragers,” at: https://royalsocietypublishing.org/doi/10.1098/r-
spb.2021.0903.
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CHAPTER 5

...[EJvolution codifies happenstance into strategy.

- from Spillover, by David Quammen.

Abstract

Animal social interactions are the outcomes of evolved strategies that inte-
grate the costs and benefits of being sociable. We study a scenario in which a
fitness-reducing infectious pathogen is introduced into a population which has
initially evolved movement strategies in its absence. Within only a few genera-
tions, pathogen introduction provokes a rapid evolutionary shift in animals’ social
movement strategies, and the importance of social cues in movement decisions
increases. Individuals undertake a dynamic social distancing approach, trading
more movement (and less intake) for lower infection risk. Pathogen-adapted pop-
ulations disperse more widely over the landscape, and thus have less clustered
social networks than their pre-introduction, pathogen-naive ancestors. Running
epidemiological simulations on these emergent social networks, we show that
diseases do indeed spread more slowly through pathogen-adapted animal soci-
eties. Finally, the mix of post-introduction strategies is strongly influenced by a
combination of landscape productivity, the usefulness of social information, and
disease cost. Our model suggests that the introduction of an infectious pathogen
into a population can trigger a rapid eco-evolutionary cascade, rapidly changing
animals’ social movement strategies, which alters movement decisions and en-
counters between individuals. In turn, this changes emergent social structures,
and our model informs how such change can make populations more resilient
to future disease outbreaks. Overall, we offer both a modelling framework and
initial predictions for the evolutionary and ecological consequences of wildlife
pathogen spillover scenarios.
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Introduction

NIMAL sociality emerges from individual decisions that balance the benefits
A of associations against the costs of proximity or interactions with neighbours
(Tanner and Jackson 2012; Gil et al. 2018; Webber and Vander Wal 2018; Webber
etal. 2022). While such associations can inadvertently or deliberately yield useful

social information about resource availability (Danchin et al. 2004; Dall et al.

2005; Gil et al. 2018), they also provide opportunities for the transmission of
parasites and infectious pathogens among associating individuals (Weinstein et

al. 2018; Romano et al. 2020; Albery et al. 2021; Cantor et al. 2021; Romano et al.

2021). Wildlife pathogen outbreaks affect most animal taxa, including mammals
(Blehert et al. 2009; Fereidouni et al. 2019; Chandler et al. 2021; Kuchipudi et
al. 2022), birds (Wille and Barr 2022), amphibians (Scheele et al. 2019), and
social insects (Goulson et al. 2015). Weighing the potential risk of infection
from social interactions against the benefits of social movements — where to
move in relation to other individuals’ positions — is thus a common behavioural
context shared by many animal species. Movement strategies incorporating social
information — the presence and status of neighbours — can facilitate or reduce
spatial associations, and help animals balance the costs and benefits of sociality

(Gil et al. 2018; Webber and Vander Wal 2018; Albery et al. 2021; Webber et al.

2022). Animals’ social movements link landscape spatial structure, individual
distributions, and the emergent structure of animal societies (Kurvers et al. 2014;
Gil et al. 2018; Webber et al. 2022). Together, they influence the dynamics of
disease outbreaks in animal populations (Keeling et al. 2001; White et al. 2018a;
Romano et al. 2020; 2021), and such outbreaks may in turn have cascading effects
on landscape structure and community ecology (Monk et al. 2022).

On ecological timescales, pathogen outbreaks often reduce social interactions
among individuals. This is due to a combination of mortality-induced decreases
in population density (e.g. Fereidouni et al. 2019; Monk et al. 2022), and adaptive
behavioural responses by which animals reduce encounters between infected
and healthy individuals (Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu
et al. 2021; Stockmaier et al. 2021). The latter case includes self-isolating when
infected, or avoiding potentially infectious individuals (Stroeymeyt et al. 2018;
Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021). However,
when pathogens are first introduced into a population, such as during novel
cross-species spillover (Chandler et al. 2021; Kuchipudi et al. 2022), fine-tuned
avoidance responses are less likely, as individuals may have no prior experience

of cues that indicate infection (Weinstein et al. 2018; Stockmaier et al. 2021).

Spreading through host-host contacts, pathogens causing chronic infections
(Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021) may instead impose
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fitness costs, thus selecting against host social behaviour, and hence against
social connectivity itself (Altizer et al. 2003; Cantor et al. 2021; Poulin and Filion
2021; Romano et al. 2021; Ashby and Farine 2022).

Yet novel pathogen introductions are primarily studied for their immediate de-
mographic (Fey et al. 2015), and potential medical (Levi et al. 2012; Chandler et al.
2021; Kuchipudi et al. 2022; Wille and Barr 2022) and economic implications
(Keeling et al. 2001; Goulson et al. 2015; Jolles et al. 2021), with host evolu-
tionary dynamics (and especially changes in sociality) mostly ignored. This is
presumably because the evolution of pathogen host traits, and moreover complex
behavioural traits such as sociality, is expected to be slow and not immediately
relevant. Since important aspects of animal ecology, including the transmission
of foraging tactics (Klump et al. 2021) and migration routes (Guttal and Couzin
2010; Jesmer et al. 2018), depend on social interactions, it is necessary to under-
stand the long-term consequences of pathogen introductions for animal societies.
Climate change is only expected to make novel pathogen introductions more
common (Sanderson and Alexander 2020; Carlson et al. 2022a), making such
studies more urgent.

Theory suggests that animal sociality evolves to balance the value of social asso-
ciations against the risk of pathogen transmission (Bonds et al. 2005; Prado et al.
2009; Ashby and Farine 2022). However, analytical models often reduce animal
sociality to single parameters, while it actually emerges from individual decisions
conditioned on multiple internal and external cues. Social decision-making and
movement often also vary among individuals (Tanner and Jackson 2012; Wolf
and Weissing 2012; Spiegel et al. 2017; Gartland et al. 2021), but analytical mod-
els are unable to include individual differences in sociability. Epidemiological
models based on contact networks can incorporate individual variation in social
behaviour by linking these differences to positions in a social network (White
et al. 2017; Albery et al. 2020; 2021). Yet network models often cannot capture
fine-scale feedbacks between individuals’ social and spatial positions (Albery et al.
2020; 2021), nor spatial variation in infection risk (Albery et al. 2022), making
such models sensitive to both the network formation process, and to sampling
biases in empirical data collection (White et al. 2017).

Mechanistic, individual-based simulation models (IBMs) suggest themselves
as a natural solution; they can incorporate substantial ecological detail, including
explicit spatial settings (DeAngelis and Diaz 2019), and detailed disease transmis-
sion (White et al. 2018a,b; Scherer et al. 2020; Lunn et al. 2021). Individual-based
models hitherto haved focused on immediate epidemiological outcomes, such
as infection persistence, and do not have an evolutionary component (White
et al. 2018b; Scherer et al. 2020; Lunn et al. 2021). Incorporating an evolutionary
component to movement-disease IBMs could allow predictions on important
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feedbacks between the ecological outcomes of infectious disease and the con-
sequences for the evolution of host behaviour (Cantor et al. 2021). This could
include the emergence of tradeoffs in the costs and benefits of sociability (Gart-
land et al. 2021), with cascading ecological and social effects (Tanner and Jackson
2012; Spiegel et al. 2017; Monk et al. 2022; Webber et al. 2022). The range of
animal taxa at risk from a wide array of pathogens and parasites (Sanderson and
Alexander 2020; Carlson et al. 2022a) makes it important to conceive of models
that can capture the key features of diverse host-pathogen dynamics and offer
broad conceptual insights (White et al. 2018a,b).

We built a model that seeks to capture the essential elements of pathogen
(or parasite) transmission among animals foraging on patchily distributed re-
sources — this is a common behavioural context shared by many potential host
species (White et al. 2018a,b). We examined the eco-evolutionary consequences
of the introduction of a pathogen into a novel host population (such as during
cross-species spillover: Bastos et al. 2000; Blehert et al. 2009; Fereidouni et al.
2019; Scheele et al. 2019; Sanderson and Alexander 2020; Carlson et al. 2022a;
Kuchipudi et al. 2022; Monk et al. 2022; Wille and Barr 2022). In our evolutionary,
spatial, individual-based simulation, we modelled the repeated introduction of an
infectious pathogen to populations that had already evolved foraging movement
strategies in its absence. Our model could be conceived as an abstract representa-
tion of, among others, spillovers of foot-and-mouth disease from buffalo to impala
(Bastos et al. 2000; Vosloo et al. 2009), or sarcoptic mange from llamas to vicufias
(Monk et al. 2022), current and historic spread of avian influenza among sea- and
wading bird species (Global Consortium for HSN8 and Related Influenza Viruses
2016; Wille and Barr 2022), or SARS-CoV-2 from humans to deer (Chandler et al.
2021; Kuchipudi et al. 2022).

We compared how social information was used in movement strategies evolved
before and after pathogen introduction, and the ecological outcomes for individ-
ual intake, movement, and associations with other foragers. Using both IBMs
and network epidemiological models (Bailey 1975; White et al. 2017; Stroeymeyt
et al. 2018; Wilber et al. 2022), we examined whether pathogen-risk adapted
populations were more resilient to the spread of infectious disease than their
pathogen-risk naive ancestors. We also investigated the effect of landscape pro-
ductivity and the cost of infection, which are both expected to influence the
selection imposed by pathogen transmission (Hutchings et al. 2000; Almberg et
al. 2015; Ezenwa et al. 2016). Overall, we provide a theoretical framework broadly
applicable to novel host-pathogen introduction scenarios, and demonstrate the
importance of including evolutionary dynamics in movement-disease models.
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The Pathomove Model of Novel Pathogen Introduction

We implemented an individual-based simulation model to represent foraging
animals (‘foragers’) seeking discrete, immobile, depleteable food items (see SI
Appendix Fig. S1 - S2) (Spiegel et al. 2017; Gupte et al. 2021). Food items are
distributed over a two-dimensional, continuous-space resource landscape with
wrapped boundaries (a torus). Our model, similar to previous eco-evolutionary
individual based models (Getz et al. 2015; Gupte et al. 2021; Netz et al. 2021b), has
two distinct timescales: (1) an ecological timescale comprising of T timesteps that
make up one generation (T = 100 by default), and (2) an evolutionary timescale
consisting of 5,000 generations (G). At the ecological timescale, individuals sense
local counts of food items and competitors, move according to inherited move-
ment strategies, and forage for food. At the same timescale, individuals that
carry an infectious, fitness-reducing pathogen, may, when in close proximity
with uninfected individuals, pass on the pathogen with a small probability (see
Pathogen Transmission and Disease Cost). At the evolutionary timescale, individ-
uals reproduce and transmit their movement strategies (see Starting Location
and Inheritance of Movement Rules) to the their offspring. The number of off-
spring is linked both to individuals’ success in finding and consuming food items,
and to the duration that they were infected by the pathogen at the ecological
timescale. The model was implemented in R and C++ using Rcpp (Eddelbuettel
2013; R Core Team 2020) and the Boost.Geometry library for spatial computations
(www.boost.org); model code is at github.com/pratikunterwegs/pathomove.

Distribution of Food Items

Our landscape of 60 x 60 units contains 1,800 discrete food items, which are
clustered around 60 resource ‘kernels’, for a resource density of 0.5 items per
unit? (see SI Appendix Fig. S1 - S2). This prevents synchronicity in the availability
and regeneration of food items. Each available food item can be sensed and
harvested by foraging individuals (see below). Once harvested, another food item
isregenerated at the same location after a fixed regeneration time R, which is set at
50 timesteps by default; alternative values of 20 and 100 timesteps represent high
and low productivity landscapes respectively. Food item regeneration is delinked
from population generations. Thus the actual number of available food items is
almost always in flux. In our figures and hereafter, we chose to represent R as the
number of times a food item would regenerate within the timesteps in a single
generation T (default = 100), resulting in R values of 1, 2, and 5 for regeneration
times of 100, 50 (the default), and 20 timesteps. Items that are not harvested
remain on the landscape until they are picked up by a forager. Each food item
must be processed, or ‘handled’, by a forager for T;, timesteps (the handling time,
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default = 5 timesteps) before it can be consumed (Ruxton et al. 1992; Gupte et al.

2021). The handling time dynamic is well known from natural systems in which
there is a lag between finding and consuming a food item (Ruxton et al. 1992),
and may be caused by the need to extract edible portions from inedible structures,
such as mussels from their shells, or seeds from their casings.

Individual Foraging and Movement

Individuals forage in a randomised order, harvesting the first available food
item within their movement and sensory range (ds = d,,, a circle with a radius
of 1 unit (see SI Appendix Fig. S1 - S2). Once harvested, the item is no longer
available to other individuals, leading to exploitation competition among nearby
foragers. Furthermore, the location of the item also yields no more cues to other
foragers that an item will reappear there, reducing direct cues by which foragers
can navigate to profitable clusters of food items. Individuals that harvest a food
item must handle it for T, timesteps (default = 5 timesteps), while all individuals

not handling a food item are considered idle (Ruxton et al. 1992; Gupte et al.

2021). As handlers are immobilised at the location where they encountered
food, they may be good indirect indicators of the location of a resource cluster

(‘social information’) (Danchin et al. 2004; Romano et al. 2020; Gupte et al. 2021).

Once individuals finish handling a food item, they return to the non-handling,
searching state.

Our model individuals move in small, discrete steps of fixed size (d,, = 1 unit).
Each step is chosen based on the individuals’ assessment of local environmental
cues, and this assessment is made using evolved movement strategies (as in Gupte
et al. 2021; Netz et al. 2021b). First, individuals scan their current location, and
five equally spaced points around their position, at a distance of 1 unit for three
cues (ds, see SI Appendix Fig. S1 - S2): the number of food items (F), the number
of foragers handling a food item (‘handlers’: H) and the number of idle foragers
not handling a food item (‘non-handlers’: N). Individuals assign a suitability
(see Gupte et al. 2021; Netz et al. 2021b) to their current position and each of
the five locations, using their inherited preferences for each of the cues: S =
sgF + syH + syN + €. The preferences s, sp, and sy for each of the three cues
are heritable from parents to offspring, while ¢ is a very small error term drawn
for each location, to break ties among locations. The values of each of the cue
preferences relative to each other determine individuals’ movement strategies
(Gupte et al. 2021). All individuals move simultaneously to the location to which
they have assigned the highest suitability (‘step selection’) (akin to step-selection;
Fortin et al. 2005); this may be their current location, in which case individuals
are stationary for that timestep. Since individuals may differ in their inherited
preferences for each of the three cues, two individuals at the same location may
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make quite different movement decisions based on the same local cues. Handlers,
however, are considered immobile and do not make any movement decisions.

Pathogen Transmission and Disease Cost

We modelled circumstances that are expected to become increasingly common
due to rapid global changes; the population evolves for 3/5™ of the simulation
(until G = 3,000; of 5,000) in the absence of a pathogen, after which a pathogen is
introduced in each generation until the end of the simulation (G = 5,000). Our
model captures some essential features of pathogen or parasite transmission
among animals (White et al. 2017): the pathogen may transmit from infected
host individuals to their susceptible neighbours with a per-timestep probability p
of 0.05. This transmission is only possible when the two individuals are within a
the transmission distance, dg. For simplicity, we set d, to be the movement range
(1 unit). Once transmitted, the pathogen is assumed to cause a chronic disease
which reduces host energy stores by a fixed amount called § E in every following
timestep; 6 E is set to 0.25 by default (alternative values: 0.1, 0.5). Since novel
pathogen introductions can periodically re-occur in natural environments (Bas-
tos et al. 2000; Vosloo et al. 2009; Almberg et al. 2015; Goulson et al. 2015; Jolles
et al. 2021; Carlson et al. 2022a; Wille and Barr 2022), we set up our model such
that the pathogen was introduced to 4% of individuals in each generation (N =
20; ‘primary infections’). This is necessary to kick-start the pathogen-movement
eco-evolutionary feedback dynamics, and populations may indeed repeatedly
acquire novel pathogens (or strains) through external sources, such as infected
individuals of other spatially overlapping species (e.g. Bastos et al. 2000; Keel-
ing et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Carlson et al. 2022a;
Kuchipudi et al. 2022; MonkKk et al. 2022; Wille and Barr 2022). For complete-
ness, we also considered scenarios in which novel pathogen introductions only
occur sporadically in the generations after the initial event, rather than in every
generation (see SI Appendix).

Starting Location and Inheritance of Movement Rules

For simplicity, we considered a population of haploid individuals with discrete,
non-overlapping generations, and asexual inheritance. At the end of the parental
generation, the net lifetime energy of each individual was determined as the
difference of the total energy gained through food intake and the energy lost
through infection. In the SI Appendix, we also consider an alternative imple-
mentation in which potential immune resistance against the pathogen requires
a certain percentage of individual intake, reducing the value of each food item.
The parental population produces an offspring population (of the same size) as
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follows: to each offspring, a parent is assigned at random by a weighted lottery,
with weights proportional to lifetime net energy (an algorithm following the repli-
cator equation) (Hofbauer and Sigmund 1988; Hamblin 2013). This way, the
expected number of offspring produced by a parent is proportional to the parent’s
lifetime success (Hofbauer and Sigmund 1988). The movement decision-making
cue preferences s, sy, and sy are subject to independent random mutations with
a probability of 0.01. The mutational step size (either positive or negative) is
drawn from a Cauchy distribution with a scale of 0.01 centred on zero. Thus,
while the majority of mutations are small, there can be a small number of very
large mutations. As in real ecological systems, individuals in the new generation
are intialised around the location of their parent (within a standard deviation of
2.0), and thus successful parents give rise to local clusters of offspring (see an
alternative implementation in SI Appendix).

Model Output

To understand the evolution of movement strategies, and especially how in-
dividuals weighed social information, we recorded the population’s evolved cue
preferences in every second generation, and interpreted them using the ‘be-
havioural hypervolume’ approach (Bastille-Rousseau and Wittemyer 2019). We
classified individuals based on how they used social information — the presence
and status of competing foragers — into four social movement classes: (1) agent
avoiding, if sy, sy < 0, (2) agent tracking, if both sy, sy > 0, (3) handler tracking,
if sy > 0,5y < 0, and (4) non-handler tracking, if s; < 0,sy > 0. We calculated
the relative importance of social cues — H, N — to each individual’s movement
strategy as SI;,,, = (Isgl + Isy)/(Isyl + Isyl + |sgl), with higher values indicating a
greater importance of social cues.

Animal movements and foraging distributions provide opportunities for between-

individual associations, which usually have a spatial context. Associations which
depend on spatial proximity can be captured at the individual- and population-
level by proximity-based animal social networks (Whitehead 2008; Farine and
Whitehead 2015). Social networks measured from empirical studies have been
broadly informative about the structure of animal societies, and the consequences
of this structure for animal culture, such as the learning of migration routes or
foraging skills (Aplin et al. 2012; 2013; Cantor et al. 2021), and for disease trans-
mission (Stroeymeyt et al. 2018; Albery et al. 2021; Cantor et al. 2021). We created
a proximity-based adjacency matrix by counting the number of times each indi-
vidual was within the sensory and pathogen transmission distance dg (= ds, dy; = 1
unit) of another individual (Whitehead 2008; Wilber et al. 2022). We transformed
this matrix into an undirected social network weighted by the number of pairwise
encounters: in a pairwise encounter, both individuals were considered to have
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associated with each other (White et al. 2017). The strength of the connection
between any pair was the number of times the pair were within dj of each other
over their lifetime. We logged encounters and constructed social networks after
every 10% of the total generations (i.e., every 500™ generation), and at the end
of the simulation. We constructed adjacency matrices using Rcpp (Eddelbuettel
2013), and converted them to networks using the igraph (Csardi and Nepusz 2006)
and tidygraph (Pedersen 2020) libraries for R. We omitted ephemeral pairwise
associations with a weight < 5.

We plotted the mix of social information-based movement strategies evolved
across generations in each parameter combination. Focusing on our default
scenario (6E = 0.25, R = 2), we visualised the mean per-capita distance moved,
mean per-capita intake, and mean per-capita encounters with other foragers. We
examined how the three main social movement strategies — agent avoidance,
agent tracking, and handler tracking — changed in frequency over generations.
We also examined differences among strategies in the movement distance, asso-
ciations with other agents, and frequency of infection, after they had reached
an eco-evolutionary equilibrium following pathogen introduction (G > 3,500).
We visualised the proximity based social networks of populations in a represen-
tative scenario (§E = 0.25, R = 2), focusing on the generations just before and
after the pathogen introduction events begin (pre-introduction: G = 3,000; post-
introduction: G = 3,500). We plotted the numbers of individuals infected in
each generation after pathogen introduction to examine whether evolutionary
changes in movement strategies actually reduced infection spread. We also ran
simple network epidemiological models on the emergent individual networks in
generations 3,000 and 3,500 (Bailey 1975; White et al. 2017; Stroeymeyt et al.
2018; Wilber et al. 2022), for robust comparisons of potential pathogen spread in
pathogen-naive and pathogen-adapted populations, respectively.

Outcomes from the Pathomove Model

In our model, individuals move and forage on a landscape with patchily dis-
tributed food items, and select where next to move in their vicinity, based on
inherited preferences for environmental cues — food items, and other individuals
(see SI Appendix Fig. S1). Food items, once consumed, regenerate at a rate R, and
pathogen infection imposes a per-timestep cost 6 E. We classified individuals’
social movement strategies in our model using a simplified ‘behavioural hypervol-
ume’ approach (Bastille-Rousseau and Wittemyer 2019), based on the sign of their
preferences for successful foragers handling a food item (‘handlers’, preference
sy), and for unsuccessful foragers still searching for food (‘non-handlers’, prefer-
ence sy). In our default scenario, R = 2, food regenerates twice per generation, and
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6E =0.25,i.e., consuming 1 food item offsets 4 timesteps of infection. Over the
3,000 generations before the introduction of the pathogen, populations reached
an eco-evolutionary equilibrium where the commonest social movement strategy
was to prefer moving towards both handlers and non-handlers (‘agent tracking’;
sy, Sy > 0; but see below) (Fig. 5.1A).

Rapid Evolutionary Shift in Social Movement Strategies Following Pathogen
Introduction

Introducing an infectious pathogen to 4% (n = 20) of individuals in each genera-
tion (after G = 3,000), leads to a remarkably rapid evolutionary shift — within only
25 generations of pathogen introduction — in how social information is incorpo-
rated into individuals’ movement strategies. There is a marked increase in the
frequency of individuals that track successful foragers, but avoid non-handlers
(‘handler tracking’; s;; > 0, but sy < 0) (Fig. 5.1A; 3,000 < G < 3,025). Surprisingly,
after a brief period (in evolutionary terms) of handler tracking being the most
common strategy, a third strategy also becomes more common: avoiding both
handlers and non-handlers (‘agent avoiding’; s;;, sy < 0). Within 250 generations
after pathogen introduction, agent avoiding becomes as common as the handler
tracking strategy, and this appears to be a stable equilibrium that is maintained
until the end of the simulation (2,000 generations after pathogen introduction;
Fig. 5.1A). The SI Appendix shows how the occurrence of rapid evolutionary
shifts is broadly robust to modelling assumptions; in brief, such shifts occur even
when individuals cannot benefit from evolved adaptation to local conditions
(Badyaev and Uller 2009), and when the pathogen saps a percentage, rather than
an absolute value, from daily intake.

In addition to qualitative changes in social movement strategies, pathogen
introduction also leads to social information becoming more important to move-
ment decisions. Prior to pathogen introduction (G < 3,000), individuals’ handler-
and non-handler preferences (|s;| + |syl; taken together, social information) barely
influence their movement strategies (Fig. 5.1B). These are instead guided pri-
marily by the preference for food items (sz; see Model and Analysis; see also
Supplementary Information). Social movement decisions are joint outcomes of
individual preferences for social cues and the cue value: consequently, in clus-
tered populations (see below), even small positive values of s; and s, lead to
strong emergent sociality. After pathogen introduction, there is a substantial
increase in the average importance of individuals’ preferences (or aversions) for
the presence of other foragers (Fig. 5.1B). However, there is significant variation
among individuals in the importance of social information to their movement
strategies, with distinct evolved polymorphisms that vary substantially between
simulation replicates (Fig. 5.1B).
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Figure 5.1: Pathogen introduction leads to rapid evolutionary changes in social informa-
tion use, with cascading effects on population ecological outcomes. (A) Before pathogen
introduction in the default scenario (R = 2, § E = 0.25), populations rapidly evolve a social move-
ment strategy that tracks all other individuals (‘agent tracking’; G < 3,000) — however, their
overall movement strategy is primarily guided by the presence of food items (B). Pathogen intro-
duction leads to the rapid replacement, within 25 generations, of agent tracking with ‘handler
tracking’ (preference for successful foragers; 3,000 < G < 3,025). Within 250 generations, ‘agent
avoidance’ (avoidance of both successful and unsuccessful foragers; G > 3,250) also becomes
common, stably co-existing with the handler tracking strategy in an eco-evolutionary equilibrium.
(B) After pathogen introduction (G > 3,000), the importance of social cues (the presence of other
individuals; the sum of the absolute, normalised preferences sH, sN) increases substantially on
average (grey points). Additionally, there is significant variation in the importance of social cues
to individuals (shaded regions), which is not captured by the mean or standard error. At G = 4,500,
for example, social information comprises ~ 10% of some individuals’ movement strategies, but
some individuals have evolved a stronger weight for social cues (> 20%). The rapid change in
social movement strategies following pathogen introduction has cascading effects on ecological
outcomes. Individuals, which have evolved strong aversions to at least some kinds of foragers
(depending on their strategy), (C) move more on average, (D) have only 25% of the pre-pathogen
average intake, and (E) have 100-fold fewer associations with other individuals. All panels show
data averaged over 10 replicates, but shaded region in panel B shows only a single replicate for
clarity.

Disease-dominated Ecological Cascade Due to Evolutionary Shift in Movement
Strategies

The evolutionary shift in social movement strategies causes a drastic change
in ecological outcomes (Fig. 5.1C — E; see SI Appendix Fig. S3 for other scenar-
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ios). There is a sharp increase in mean distance moved by individuals; while
pre-introduction individuals moved 35% of their lifetimes on average (i.e., 35
timesteps; handling for the remainder), post-introduction, individuals move for
80% of their lifetimes (i.e., 80 timesteps; Fig. 5.1C). The handler tracking and
agent avoiding strategies lead individuals to move away from groups of individu-
als (‘dynamic social distancing’; Pusceddu et al. 2021). Individuals being most
likely to be found near resource clusters, this leads to movement away from pro-
ductive areas of the landscape. Consequently, there is a rapid, four-fold drop in
mean per-capita intake after pathogen introduction (Fig. 5.1D). The concurrent,
near 100-fold drop in encounters between individuals after pathogen introduc-
tion (Fig. 5.1E) suggests that most encounters were likely taking place on or near
resource clusters. The reductions in intake observed are equivalent to those ex-
pected from halving landscape productivity (SI Appendix Fig. S3). Our model
shows how even a non-fatal pathogen, by influencing the evolution of movement
strategies, can have substantial indirect ecological effects — a disease dominated
ecological cascade (Monk et al. 2022).

Co-existence of Social Movement Strategies

At eco-evolutionary equilibrium (G > 3,500) the relationship between move-
ment and avoiding associations (and further, infection) is mediated by individual
differences in how exactly social information is incorporated into movement
strategies. Individuals using the agent avoiding strategy move more than handler
tracking ones (Fig. 5.2A), about 85% of their lifetime (default scenario: R = 2; 6E
= (0.25). At this limit, every step moved allows them to avoid approximately 2
encounters with other individuals. Handler tracking individuals move much less
(~ 60% - 80%), but are able to avoid approximately 20 encounters with other indi-
viduals with every extra step. These differences may explain why agent avoiding
and handler tracking individuals have similar mean infection rates, at ~ 25% and
~ 33% respectively (Fig. 5.2B). All other strategies, especially the agent tracking
strategy common in pre-introduction populations, are barely able to translate
increased movement into fewer associations (Fig. 5.2A). These strategies have a
wide range of infection rates (Fig. 5.2B), potentially because they are very rare —
these likely represent mutants that do not give rise to persistent lineages.

Reorganisation of Spatial-social Structure

Following pathogen introduction, the mixture of individual-level movement
strategies elicits a substantial re-organisation of emergent spatial and social struc-
ture at the population level. Pre-introduction populations are strongly clustered
in space (Fig. 5.3A), due to movement strategies that favour following most other
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Figure 5.2: Social movement strategies trade movement for associations through dynamic
social distancing, leading to differences in infection rates. In post-introduction populations
at eco-evolutionary equilibrium (G > 3,500), (A) both agent avoiding and handler tracking indi-
viduals can reduce encounters with other individuals by moving to avoid other foragers (dynamic
social distancing). Handler tracking individuals have many more encounters than agent avoiding
individuals, but surprisingly, are better able to reduce encounters through increased movement.
Individuals using other strategies (mostly agent tracking) have a wider range of movement dis-
tances, but cannot efficiently avoid other foragers by moving more. (B) Avoiding all other foragers
leads to marginally lower infection rates than tracking successful foragers (and avoiding unsuc-
cessful ones; handler tracking). Surprisingly, rare pre-introduction strategies such as following
any nearby individuals (agent tracking) may also have low infection rates, potentially due to their
rarity. Panel A shows linear model fits with a log scale Y-axis; panel B shows infection rates; all
data represent generation- and replicate-specific means (G > 3,500; R = 2, § E = 0.25).

foragers. This spatial proximity means that most individuals encounter each
other at least once, leading to numerous unique partners (the ‘degree’) for each
forager (Fig. 5.3 inset 1: blue). In contrast, the spread-out networks in pathogen-
risk adapted populations suggest that most foragers move substantially from
their initial locations over their lifetime, associating only ephemerally with for-
agers from all over the landscape (Fig. 5.3B). This reflects movement strategies
which lead to near-perpetual movement to avoid associations; a sort of dynamic
social distancing seen in real animal societies under risk of pathogen spread
(Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier
et al. 2021). This dispersed population structure means that most pathogen-risk
adapted foragers encounter fewer than 10% of the population over their lifetime
(Fig. 5.3 inset 1: red).



DISEASE & MOVEMENT

1 °
78 s L)
D @9 o @ i o0
o 6%5 q -8 e Oo"’. s, G)C“Go
o °ce o8 °
° °
° ° 3 GD; Q@Do O ovg , o
° Inset 1 $D 20 @ °
o )

Igg
g
.

&

% Indiv
0% 20% 40% 60%

B
oo
00
i
e
op
OJ/:
(<]
S B
‘®7
%30
@
° aan
8,000
o e%
. %,
% 8
8

T T T
0% 2% 10% 100%

% Pop. encountered
S —

Time infected 1 40 30 100

c D

1 encounter 10 encounters

100%
'
100%

% Agents infected
50%
L] ..
>
>
o
(]

0%
o
Ld
ks .
\
»
»>

50%
L

% Population infected

el
)

025 500 2 4 6 0 2 4 6
Gens. after pathogen intro. SIR model time

Figure 5.3: Reduced spatial-social clustering and disease transmission in populations
adapted to the presence of an infectious pathogen. pathogen-risk naive populations (A;
G = 3,000) are much more spatially clustered than pathogen-risk adapted populations (B; G =
3,500), and are thus rapidly infected (red: primary infections; yellow: secondary infections; blue:
never infected). Pre-introduction individuals encounter many more unique neighbours (inset
1, blue) than pathogen-risk adapted individuals (inset 1; red). Dashed grey line represents 10%
of individuals encountered (N = 50). Main panels show social networks from a single replicate
of the default scenario (R = 2, §E = 0.25), insets show 10 replicates. Nodes represent individuals
positioned at their final location. Connections represent pairwise encounters, and node size
represents encounters (larger = more encounters). Darker node colours indicate longer infection
(light blue = no infection). (C) In the first generations following pathogen introduction, nearly
every single individual in the population is infected. However, within 25 generations, tracking
the evolutionary shift towards movement strategies that avoid some or all other individuals, only
about 50% of individuals are ever infected; this drops to a stable 30% within 500 generations
after pathogen introduction. (D) The progression of two hypothetical diseases, requiring a single
encounter, or 10 encounters for a potential transmission, on emergent social networks. The
transmission of both diseases is reduced in populations with disease-adapted movement strategies
(pre-introduction: G = 3,000, blue circles; post-introduction: G = 3,500, red triangles). Subfigures
in panel D show means of 25 SIR model replicates (transmission rate g = 5.0, recovery rate y =

1.0), run on emergent social network; both panels represent 10 simulation replicates the default
scenario.

161



162

CHAPTER 5

Pathogen-risk Adapted Movement Strategies Make Animal Societies More
Resilient to the Spread of Disease

Nearly every individual in the generations just after pathogen introduction
was infected. However, tracking the evolutionary change in movement strate-
gies, the number of infected individuals fell to just about 50% within 25 gen-
erations (Fig. 5.3C). To examine potential pathogen spread in pre-introduction
populations, we ran a simple epidemiological model on the social networks emerg-
ing from individuals’ movements before and after pathogen introduction (pre-
introduction: G = 3,000; post-introduction: G = 3,500). We modelled two diseases,
(i) first, a disease requiring one encounter,and (ii) second, a disease requiring ten
encounters between individuals for a potential transmission event (transmission
rate § = 5.0, recovery rate y = 1.0).

Both the single encounter and multiple encounter diseases would infect 75% —
80% of individuals when spreading through the networks of pre-introduction pop-
ulations (Fig. 5.3D). Pathogen-risk adapted populations’ social networks are more
resilient to both the single encounter and multiple encounter disease, compared
to their pre-introduction, pathogen-risk naive ancestors, as these social networks
are sparser and individuals are more weakly connected (Fig. 5.3D). Less than 60%
of post-introduction populations were finally infected by the single encounter
disease, compared with > 75% of pre-introduction, pathogen-risk naive ances-
tors; in pathogen-risk adapted populations, the spread of the multiple encounter
disease was even slower (ever infected: = 20%).

Usefulness of Social Information and Infection Cost Influence Evolution of Social
Movement Strategies

We further explored the effect of two ecological parameters, landscape produc-
tivity (R € 1, 2, 5) and infection cost per timestep (6E € 0.1, 0.25, 0.5) on simu-
lation outcomes. Before pathogen introduction, landscape productivity alone
determines the value of social information, and thus which social movement
strategies evolve (Fig. 5.4). On low-productivity landscapes (R = 1), social infor-
mation is valuable as direct resource cues are scarce; here, the handler-tracking
strategy persists. On high-productivity landscapes (R € 2, 5), social information
is less valuable as individuals can directly detect food items more often; here,
the agent tracking strategy is most common. Across parameter combinations,
the introduction of the infectious pathogen leads to a rapid evolutionary shift
in social movement strategies. The benefits of social information, and infection
cost jointly determine how pathogen introduction alters the mix of social move-
ment strategies, but populations generally shift away from indiscriminate agent
tracking, as that strategy is associated with higher infection risk (see Fig. 5.3A).
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Figure 5.4: The balance of infection cost and the usefulness of social information together
shape the rapid evolutionary change in movement strategies triggered by pathogen intro-
duction. Pre-introduction (G = 3,000; dashed line) populations contain a mix of individuals that
either track all foragers (agent tracking), or only successful foragers (handler tracking). Handler
tracking is more common on low-productivity landscapes (R = 1), where social information is
more useful to find patchily distributed resources. After pathogen introduction, handler tracking
rapidly becomes the most common strategy when the apparent usefulness of social information is
greater than the cost of infection. This occurs both when productivity is low (R = 1) and infection
costs are low (6E = 0.1), but also when productivity is high (R = 5) with intermediate infection costs
(6E = 0.25). When the cost of infection outweighs the apparent usefulness of social information,
the agent avoidance (avoiding both successful and unsuccessful foragers) emerges and rapidly be-
comes a common strategy (6E = 0.5; 6E = 0.25, R = 1). In scenarios of high landscape productivity
combined with low infection costs (e.g. R = 5, §E = 0.1), the agent tracking strategy persistsin a
large proportion after pathogen introduction, as these individuals can balance disease costs with
intake alone. All panels show mean frequencies over 10 replicate simulations in 100 generation
bins; frequencies are stacked. Grey areas show the relatively uncommon ‘non-handler’ tracking
strategy.

When the benefit of social information is equivalent to the cost of infection,
the handler tracking strategy is common (R=1,5E=0.1;R = 5, §E = 0.25). When
apparent social information benefits are lower than infection costs (e.g. 6E =
0.5), the agent avoiding strategy is common. The effect of landscape productivity
in obviating a sensitivity to social information cues (especially, conspecific sta-
tus) is also eroded by pathogen introduction. On high-productivity landscapes
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where individuals were indiscriminately social, (R € 2, 5, §E = 0.1), the handler
tracking strategy becomes common, as individuals prioritise higher-quality social
information (handlers, which indicate a resource cluster). However, high land-
scape productivity can also compensate for the cost of infection, as evidenced
by the agent tracking strategy remaining prevalent: this is only possible if these
individuals can consume sufficient resources to overcome disease costs.

Contextualising the Outcomes of the Pathomove Model

Our general model captures important features of infectious pathogen (or par-
asite) transmission among host animals in a (foraging) context that is relevant to
most species. The combination of ecological, evolutionary, and epidemiological
dynamics in a spatial setting is unprecedented for movement-disease models,
and extends current understanding of animal spatial and social ecology (Kurvers
et al. 2014; Webber and Vander Wal 2018; Romano et al. 2020; Albery et al. 2021;
Romano et al. 2021; Webber et al. 2022). Presently, most movement-disease
models are non-evolutionary (White et al. 2017; 2018b; Scherer et al. 2020; Lunn
et al. 2021), presumably because evolution is expected to be too slow to impact
epidemiological-ecological outcomes (MonKk et al. 2022). We demonstrate the
pitfalls of this assumption: evolutionary transitions in sociality occur over fewer
generations than required for the development of key aspects of animal ecology,
such as migration routes (Jesmer et al. 2018; Cantor et al. 2021). We also demon-
strate the tension inherent to sociality under the risk of an infectious pathogen, in
an explicitly spatial context. Our work shows how qualitatively and quantitatively
different social movement strategies — making different trade-offs between social
information and infection risk — can co-exist in a single population (Wolf and
Weissing 2012; Webber and Vander Wal 2018; Gartland et al. 2021; Webber et al.
2022).

Social Information Use and Pathogen Introduction

Prior to pathogen introduction, the value of social information influenced
which social movement strategies were evolved. Individuals initialised (‘born’)
near their parent’s final location may benefit from ‘ecological inheritance’ (Badyaev
and Uller 2009) of their parent’s favourable position near resource clusters (see
SI Appendix Fig. S2, S4). Avoiding potential competitors (and kin) thus correlates
with avoiding profitable areas, and this leads to the persistence of the indiscrim-
inately social agent tracking strategy, despite the evident costs of exploitation
competition. In an alternative implementation with large-scale natal dispersal,
handler tracking is the commonest strategy prior to pathogen introduction (see
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SI Appendix). Following pathogen introduction, the agent tracking strategy of our
default scenario allows the disease to spread very easily among entire lineages
of social individuals (see Fig. 5.3A) (Kurvers et al. 2014). This neatly demon-
strates why the risk of infection or parasitism could be among the mechanisms
underlying density dependence in natal dispersal decisions (Travis et al. 1999).

Following pathogen introduction, the evolutionary shift in social movement
strategies is much more rapid than the timescales usually associated with the
evolution of complex traits such as sociality (about 25 generations). Avoiding
potentially infectious individuals is a key component of navigating the ‘landscape
of disgust’ (Weinstein et al. 2018). Our results show that sensitivity to cues of
high pathogen transmission risk can rapidly evolve following the introduction of
anovel pathogen, with a complete replacement of the hitherto dominant social
strategy. The emergence of qualitative individual variation in social movement
strategies, and especially the trade-off between movement, associations, and
infection risk also demonstrates the evolution of ‘sociability as a personality trait’
(Gartland et al. 2021).

We also find substantial individual variation in the quantitative importance
of social cues overall, which is a key component of the evolution of large-scale
collective behaviours, such as migration (Guttal and Couzin 2010). Our work
suggests how, by leading to the necessary diversity in social movement strategies,
a novel pathogen may actually lay the groundwork for the evolution of more com-
plex collective behaviour. Nonetheless, the rapid decreases in social interactions
should primarily prompt concern that the evolutionary consequences of pathogen
introduction could slow the transmission of, and erode, animal culture (Cantor
et al. 2021) — including foraging (Klump et al. 2021) and migration behaviours
(Guttal and Couzin 2010; Jesmer et al. 2018). Pathogens themselves typically
have shorter generation times than their hosts, and may also evolve rapidly in
response to changes in host sociality (Ashby and Farine 2022). Although not
examined here, a mixture of social strategies could allow for the maintenance of
a corresponding diversity in pathogen strategies as well (Prado et al. 2009; Ashby
and Farine 2022).

Ecological Causes and Consequences of Social Movement Strategies

In our model, landscape productivity (R), is a proxy for the usefulness of so-
ciality overall, as social information is less useful when direct resource cues are
abundant (high R). Social information benefits in disease models often have no
mechanistic relationship with the subject of the information (e.g. food or preda-
tors) (Ashby and Farine 2022). In contrast, social information benefits in our
model are emergent outcomes of animal movement and foraging behaviour. Our
predictions may help explain intra- and inter-specific diversity in social systems
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across gradients of infection risk and the usefulness of social information (Altizer
et al. 2003; Sah et al. 2018), and studies tracking social movements and poten-
tial for disease spread could form initial tests of our basic predictions (Wilber
et al. 2022). While our individuals do not die, the evolved pathogen-risk adapted,
dynamic social distancing strategies (Stockmaier et al. 2021) lead to a signifi-
cant worsening (equivalent to a halving) of individuals’ intake. In real systems,
this could increase populations’ susceptibility to extreme climate change related
mortality events (Fey et al. 2015).

More positively, animals may be able to adapt relatively quickly to the spillover
and eventual persistence of infectious pathogens, even when they cannot specifi-
cally detect and avoid infected individuals (Altizer et al. 2003; Stroeymeyt et al.
2018; Pusceddu et al. 2021; Stockmaier et al. 2021). While the most noticeable
effect of pathogen outbreaks is mass mortality (Fey et al. 2015), even quite serious
pathogens — Sarcoptic mange (Almberg et al. 2015), foot-and-mouth disease
(Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021), SARS-CoV-2 (Chandler
et al. 2021; Kuchipudi et al. 2022), and avian influenza (Global Consortium for
HS5N8 and Related Influenza Viruses 2016; Wille and Barr 2022) among others
— appear to spread at sub-lethal levels for many years between lethal outbreaks.
Our model shows how disease-dominated ecological cascades (MonKk et al. 2022)
could occur even without mortality effects, due to evolutionary shifts in sociality
alone. The altered ecological state (here, less resource consumption, as in Monk
et al. 2022) may be maintained long after — and indeed because — a population
has adapted to be less social in the presence of a pathogen. Our work suggests
that decreased sociality resulting from adaptation to a novel pathogen could slow
the transmission of future novel pathogens. While decreased sociality could also
reduce the prevalence of previously endemic pathogens adapted to a more social
host, it may also degrade ‘social immunity’ through reduced sharing of beneficial
commensal microbes, or of low, immunising doses of pathogens (Almberg et al.
2015; Ezenwa et al. 2016).

Feedbacks with Pathogen Chracteristics

Our model results are contingent upon sustained introduction of the pathogen
(or its novel strains) to host populations. More sporadic introductions (once every
few generations) apparently do not cause evolutionary shifts in social movement
(SI Appendix). Yet repeated pathogen and parasite introductions among suscepti-
ble populations appear to be quite common (Bastos et al. 2000; Vosloo et al. 2009;
Levi et al. 2012; Global Consortium for H5N8 and Related Influenza Viruses 2016;
Scherer et al. 2020; Jolles et al. 2021; Wille and Barr 2022). Such introductions
are often detected only among easily observed groups such as birds (Wille and
Barr 2022), or after evident mass mortality events (Fey et al. 2015; Fereidouni
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et al. 2019). Seasonal host-pathogen dynamics could and do keep pathogens
circulating in reservoir hosts, with regular pulses in primary infections similar
to our model (e.g. due to new calves in African buffalo hosting foot-and-mouth
disease: Jolles et al. 2021, or winter peaks in mange among wolves: Almberg et al.
2015). Existing host-pathogen dynamics, and potential pathogen range expan-
sions, could thus provide more frequent opportunities for novel transmissions to
overlapping species than previously guessed. Our model shows how this provides
a powerful selective force in favour of detecting and avoiding infection risk cues
(Weinstein et al. 2018).

Pathogens also typically have much shorter generation times than their hosts.
Analytical models expect pathogen attributes to rapidly co-evolve to match host
population attributes (e.g. sociality and immune resistance) (Bonds et al. 2005;
Prado et al. 2009; Ashby and Farine 2022). Such models treat pathogens — just
as they do host animals — in relatively simple, non-mechanistic ways. Pathogens
are primarily expected to evolve to a virulence that promotes between-host trans-
mission (Bonds et al. 2005). Our mechanistic model does not explicitly consider
host-pathogen co-evolutionary dynamics, as this complexity was beyond the
scope of our general, conceptual model. Adding pathogen evolutionary dynamics
to a mechanistic individual-based model would require careful consideration of
(i) the costs the pathogen imposes on its hosts, and (ii) how it transmits between
hosts, both within and between generations. We expect that multiple pathogen
strategies could coexist in a host population that itself has multiple social move-
ment strategies.

Towards Hypothesis-testing and Predictive Modelling

In order to be widely applicable to diverse novel host-pathogen introduction
scenarios, our model is necessarily quite general. A wide diversity of pathogens
and their dynamics remains to be accurately represented in individual-based
models (White et al. 2017; 2018b; Scherer et al. 2020; Lunn et al. 2021). Our
framework can be expanded and specifically tailored to real-world situations in
which populations are repeatedly exposed to novel pathogens (or strains) (Bastos
et al. 2000; Scherer et al. 2020; Chandler et al. 2021; Jolles et al. 2021; Kuchipudi
et al. 2022; Wille and Barr 2022). Such detailed implementations could include
aspects of the pathogen life-cycle (White et al. 2017; 2018a), account for sociality
as a counter to infection costs (Almberg et al. 2015; Ezenwa et al. 2016), or model
host-pathogen sociality-virulence co-evolution (Bonds et al. 2005; Prado et al.
2009; Ashby and Farine 2022). We generate consistent predictions of marked
and swift evolutionary shifts in social movement strategies that could plausibly
be tested over the timescales of some long-term animal tracking studies (Wilber
et al. 2022).
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Importantly, our social information-based movement strategies are made up
of continuous values that place individuals on a two-dimensional trait space of
relative preferences (or aversions) for successful and unsuccessful foragers (see
Model and Analysis; Bastille-Rousseau and Wittemyer 2019). Such social move-
ment strategies could already be revealed for free-living animals using newer
step-selection approaches (Avgar et al. 2016), combined with the simultaneous,
high-throughput tracking of many hundreds of animals in an area (Nathan et al.
2022). Future work would ideally combine wildlife monitoring and movement
tracking across gradients of pathogen prevalence, to detect novel cross-species
spillovers (Chandler et al. 2021; Kuchipudi et al. 2022) and study the spatial and
epidemiological consequently of animal movement strategies (Bastille-Rousseau
and Wittemyer 2019; Monk et al. 2022; Wilber et al. 2022). Given that infection
patterns can change rapidly in space even in small, well-mixed populations (Al-
bery et al. 2022), the systems that could be used to test these phenomena may
be widespread and easily available. Finally, our model shows why it is important
to consider evolutionary responses in movement-disease studies, and provides
a general framework to further the integration of evolutionary approaches in
wildlife spatial epidemiology.
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Figure 5.5: Model implementation of discrete movement steps in continuous space, with
movement steps selected based on inherited preferences for environmental cues. In our
model, (A) individuals search for food items (green circles), which may be immediately available
(filled green circles; F), or may be available only in the future (open green circles). Individuals
can sense only available items, and not unavailable ones. However, given our landscape structure,
food items are clustered, making available items a good indicator of where resource clusters are
(see next figure). Individuals can also sense other foraging individuals, and can sense whether they
have successfully found, and are handling, a food item (handlers; blue circles), or whether they
are unsuccessful foragers still searching for food (non-handlers; filled grey circles; N). To decide
where to move, individuals sample their environment for these three cues (F, H, N) at 5 locations
around themselves (large open grey circles), and have a sensory range of dg. When the sensory
range is relatively large (default = 1.0 units), there is some small overlap in samples. Individuals
assign each potential direction a suitability, S = spF + syH + syN + ¢, where the coefficients
sp, Spy Sy are inherited preferences for environmental cues, and e is a small error term that helps
break ties between locations. In our implementation, the sensory distance (ds) and the movement
distance (d,,) are the same, 1.0 units. (B) Our infectious pathogen is transmitted between infected
(orange circles) and susceptible (filled grey circles) individuals, with a probability p = 0.05,
when they are within a distance dj of each other. In our implementation, d, is the same as dg, dy
= 1.0 units.
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Figure 5.6: An example of the resource landscape used in our simulations. Our simulation’s
resource landscape consists of 60 randomly distributed clusters of food items (‘resource patches’),
with 1800 discrete food items divided among the clusters (30 items per cluster). The landscape is
a square of 60 units per side, with wrapped boundaries (i.e., a torus). The food item density in our
scenarios is 0.5 food items per unit area. Items are distributed around the centre of each cluster,
within a standard deviation of 1.0 unit. Items, once consumed by foragers, are unavailable for a
fixed number of timesteps (the regeneration time R, expressed in terms of the foragers’ generation
time), after which they regenerate in the same location. While regenerating (i.e., unavailable).
While regenerating, items cannot be sensed by foragers. The sensory ranges of individuals (dg)
are shown for each potential step (red circles, including the current location: blue circle). Food
item clustering means that available items, as well as foragers handling a food item (handlers) are
good indicators of the location of a resource cluster.
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Figure 5.7: Rapid changes in ecological outcomes following pathogen introduction. The in-
troduction of the infectious pathogen leads to rapid evolutionary changes in movement strategies
(see Figures 1 and 5; main text) across most combinations of landscape productivity and infection
cost. In all combinations where there is rapid evolutionary shift in social-movement strategies,
there is a similar change in the population’s ecological outcomes: more movement, less intake,
and fewer associations. Only in scenarios where the mix of social-movement strategies does not
change (R € 2, 5; 6 E = 0.1), is there broadly no change in population ecological outcomes. Each
subplot in each panel shows the mean and standard error of the per-capita values for (A) distance
moved, (B) intake, (C) number of associations, or encounters, with other individuals. Means and
standard deviations are shown before (G = 3,000) and after (G = 3,500) pathogen introduction;
each data point represents 10 replicates of the relevant parameter combination.

Effect of Modelling Choices

Modelling choices can have a substantial effect on the outcomes of simulations
with multiple, complex interactions among components (Scherer et al. 2020;
Gupteetal.2021; Netzetal. 2021b). We show the effect of varying implementation
on two key aspects of our model: (1) where individuals are initialised, or ‘born’, on
the landscape (natal dispersal), (2) how the infectious pathogen imposes fitness
costs.

Global Natal Dispersal of Individuals

Some models initialise the individuals in each new generation at random loca-
tions on the landscape (see e.g. 2021; Chapter 4); this can be called ‘global’ natal
dispersal. This is a reasonable choice when modelling animals during a specific
stage of their life cycle, such as after arriving on a wintering or breeding site after
migration. Our default choice, on the other hand, is ‘local’ natal dispersal, where
individuals are initialised close to their parent’s last position. This is also defen-
sible, as many organisms do not disperse very far from their ancestors. When
animals do not disperse very far, they may not evolve movement rules that can
be generalised across all landscape conditions, especially when the landscape is
ecologically heterogeneous. Instead, animals may adapt their strategies to the
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local conditions which they inherit from their parents (‘ecological inheritance’;
Badyaev and Uller 2009).

Successful individuals are likely to have more offspring than unsuccessful indi-
viduals, and successful individuals are likely to be found — in our simulation and
in real natural systems — on or near profitable resource patches. This means that
many individuals are initialised near profitable patches. In this case, and because
of the sparse distribution of resource patches on the landscape, individuals adapt
to tolerate their many neighbours (who are often kin), as avoiding them would
lead to also moving away from a profitable patch.

By forcing animals in each new generation to encounter ecological circum-
stances potentially different from those of their parents, implementing global
dispersal can help investigate whether animals’ evolved movement strategies are
truly ‘optimal’ at the global scale. We implementated global dispersal by running
10 replicates of each parameter combination (9 combinations of § E and R; 90
simulations in all), with dispersal set to 10. This means that individuals’ initial
positions are drawn from a normal distribution with standard deviation = 10,
centred on the location of their parent (see Fig. 5.8; blue circles).

Evolutionary Outcomes of the Global Dispersal Implementation

In the global dispersal scenario (see Fig. 5.8), there is a marked difference in
which social movement strategy is evolved before pathogen introduction. Since
individuals are initialised relatively far away from their parent’s position, they
encounter potentially very different ecological conditions, both in terms of the
number of other individuals, and the local availability of food items.

As a result, most individuals evolve a ‘handler tracking’ social movement strat-
egy before the introduction of the novel pathogen. This strategy allows individuals
to gain the benefits of social information on the location of a resource patch (of
which handlers are an indirect cue), while avoiding potential competitors, as well
as potentially moving away from areas without many food items.

After pathogen introduction, there is a rapid evolutionary shift in social move-
ment strategies, similar to the shift seen in our default implementation of local
dispersal. However, these shifts only occur under conditions where the cost of
infection is apparently greater than the value of using social information to find
food items. In brief, (1) when the benefits of social information cannot compen-
sate for the costs of infection risk (6E = 0.5; 6E = 0.25, and R = 1, 2), the agent
avoiding strategy becomes more prevalent, similar to the local dispersal case. (2)
When the costs of infection are lower than the benefits of social information, or
when the resource landscape’s productivity can offset the cost of infection, the
handler tracking strategy persists as the dominant strategy (see Fig. 5.9).
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Figure 5.8: Differences between local and global dispersal. Initialising individuals in each new
generation within a standard deviation of 10 units around their parent (blue; parent at [30, 30])
places can lead them to encounter potentially very different ecological, and social, circumstances
from those of their parent. In contrast, individuals initialised close to their parents (within a
standard deviation of 2 units; red) encounter very similar conditions as their parent. The latter
also leads to substantial competition among kin. We used 10 units to represent (nearly) global
dispersal, and 2 units to represent local dispersal; this is controlled by the simulation parameter
dispersal, which takes a numeric argument.
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Figure 5.9: Pathogen introduction triggers similar evolutionary changes under global
dispersal as under local dispersal. In our alternative, global natal dispersal implementation,
the handler tracking strategy is the dominant strategy across most parameter combinations prior
to pathogen introduction. Following pathogen introduction, there is a rapid shift in the mix of
movement strategies under some ecological conditions. When the cost of infection is greater than
the apparent benefit of social information, the agent avoiding strategy becomes more common.
When infection costs are low (6 E = 0.1), pathogen introduction does not alter the mix of movement
strategies, and the handler tracking strategy continues to be the most common strategy.
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Figure 5.10: Little to no change in ecological outcomes when implementing global disper-
sal. Despite strong and rapid evolutionary shifts in social movement strategies, the ecological
outcomes for populations with global natal dispersal are very similar before and after the intro-
duction of the infectious pathogen. Each subplot in each panel shows the mean and standard
error of the per-capita values for (A) distance moved, (B) intake, (C) number of associations,
or encounters, with other individuals. Means and standard deviations are shown before (G =
3,000) and after (G = 3,500) pathogen introduction; each data point represents 10 replicates of
the relevant parameter combination.

Ecological Consequences in the Global Dispersal Implementation

Inthe global dispersal implementation, there is little to no change in population-
level ecological outcomes — mean distance moved, mean per-capita intake, and
the mean number of associations — following pathogen introduction (Fig. 5.10).
This is despite the drastic shift in evolved social movement strategies. This is
likely because a large part of individual’s lifetimes (at low R, up to 90 timesteps),
are spent moving, likely to find resource clusters. Since intake depends on finding
these clusters, and associations mostly take place at or near resource clusters,
these are also reduced compared to our local dispersal implementation.

Infection Cost as a Percentage of Intake

In our model’s default implementation, the infectious pathogen imposes a
direct cost, § E, on individuals, in each timestep that they are infected. For an in-
dividual with intake N, the net energetic gain E after being infected by a pathogen
for r timestepsis E = N — (§E x t). In this scenario, infection costs are independent
of intake.

In an alternative implementation, the infectious pathogen may be considered
to reduce an animal’s ability to process intake, or to require a portion of daily
intake to resist. Such an implementation isused in ... For an individual with intake
N, the net energetic gain E after being infected by a pathogen for r timesteps is
E = N x (1 - §E)". Naturally, the two cost structures are not easy to compare, but
a comparison of the potential outcomes is shown in Fig. 5.11.

1

N



176

CHAPTER 5

Direct cost Percentage cost
100
Net
75 energy
3 s 20
3]
(] 10
€ 50
@ 0
E
= -10
25
i 20
0 _ .|
0 5 10 15 20 0 5 10 15 20
Intake

Figure 5.11: Calculated net energy for different combinations of intake and time infected. In the
Direct cost scenario, and with a § E of 0.25 (shown here), which is our default implementation, an
individual foraging on an item (handling time = 5 timesteps) would gain 1.0 unit of intake, and
lose 1.25 units of energy in that same period if it were infected, for a net energy balance in that
period of -0.25. Individuals’ energetic balance is normalised (0 - 1) with reference to the lowest
value in each generation. Here, individuals’ infection cost is independent of their intake. In the
percentage cost scenario, individuals’ infection costs are linked to their intake. For a per-timestep
5% loss of intake (shown here), individuals infected for >25 timesteps already have a net energy
balance close to, but never less than, zero. In this implementation, individuals’ energy balances
are not normalised with reference to the lowest net energy, as no individual’s energy is ever less
than zero.

Evolutionary Outcomes of the Percentage Cost Implementation

The social movement strategies evolved prior to pathogen introduction are
identical to those seen in our default implementation. This is because the per-
centage cost implementation differs from the default only after the pathogen is
introduced. After pathogen introduction, there is a rapid evolutionary shift in
movement strategies. This shift is similar to that in our default implementation,
but the strategies evolved are different. The handler tracking strategy becomes
common across parameter combinations. However, when the costs of infection
are relatively high (7.5%), and the usefulness of social information is limited by
the abundance of food items (R = 5), the agent avoiding strategy forms about one
fourth of the population mixture of social movement strategies

Ecological Consequences in the Percentage Cost Implementation

Surprisingly, the implementation of a different cost structure for the novel,
infectious pathogen does not affect ecological, population level outcomes when
compared with outcomes in our default implementation of direct costs. Across
parameter combinations where there is a rapid evolutionary transition from agent
tracking to handler tracking as the dominant strategy, there is also an increase in
distance moved, a reduction in intake, and a reduction in associations. Notably,
the reductions in per-capita intake following pathogen introduction are similar to
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Figure 5.12: Rapid evolutionary change, but different evolutionary outcomes, in an alter-
native implementation of disease costs. In our alternative, percentage costs implementation
of the infectious pathogen, there is a rapid shift in the mix of movement strategies after pathogen
introduction. The handler tracking strategy becomes common across all parameter combina-
tions. Only when the costs of infection are relatively high (7.5%), and the usefulness of social
information is limited by the abundance of food items (R = 5), does the agent avoiding strategy
form about one fourth of the population mixture of social movement strategies.
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Figure 5.13: Rapid ecological changes accompany evolutionary shifts in an alternative
implementation of disease costs, and are similar to the default implementation. In the
alternative percentage-costs implementation of the infectious pathogen, the outcomes are very
similar to those in our default implementation of direct costs. Across most parameter combina-
tions, there is an increase in movement, a reduction in intake, and a reduction in associations
with other foragers. Each subplot in each panel shows the mean and standard error of the per-
capita values for (A) distance moved, (B) intake, (C) number of associations, or encounters, with
other individuals. Means and standard deviations are shown before (G = 3,000) and after (G =
3,500) pathogen introduction; each data point represents 10 replicates of the relevant parameter
combination.

a halving of landscape productivity (as in the default implementation), and there
is a comparable drop in the number of pairwise associations among individuals.

Sporadic Introduction of Infectious Pathogens

We implemented a variant of our main model, in which the infectious pathogen
is introduced only sporadically after the first introduction event (at G = 3,000).
Specifically, we modelled probabilistic introduction of the pathogen in each gen-
eration following the initial introduction. We call the per-generation probability
of a novel pathogen introduction event the ‘spillover rate’. We ran 10 replicates
each of this model variant and examined whether there was a similar evolutionary
shift in social movement strategies as seen in our default implementation. Since
it is the main parameter of interest, we ran this model variant for three values
of the spillover rate: 0.05, 0.1, and 0.25. Instead of examining the joint effect
of landscape productivity and cost of infection as well, we only examined the
effect of infection cost, implementing three different variants with an infection
cost 6E 0of 0.1, 0.25, and 0.5. We kept all other model parameters similar to the
default scenario of our main model, and importantly, considered only a landscape
productivity R of 2. Cross-species novel pathogen introductions are likely to be-
come more common with climate change, and so we chose these spillover rate
values to represent different scenarios under altered global regimes of pathogen
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transfer. Our model’s default implementation may be seen as an extreme case of
the models considered here, with a spillover rate of 1.0.

In our model code, the sporadic introduction is implemented by drawing the
number of generations until the next pathogen introduction event from a geo-
metric distribution whose probability parameter is given by the spillover rates
described above. Zero values are handled by converting them into ones. At our
lowest spillover rate, up to 100 generations could pass between pathogen intro-
ductions, while at our highest rates, there are rarely more than 10 generations
between introductions.

The social movement strategies evolved prior to pathogen introduction are
identical to those seen in our default implementation, as expected. Howevetr,
following pathogen introduction, we found that there was little to change in
the population-level mixture of movement strategies in this model variant (see
figure). This is regardless of the probability of a novel pathogen introduction
(our so-called ‘spillover rate’), and the cost of infection by a pathogen. Across the
simulation, the commonest social movement strategy remains ‘agent tracking’,
i.e., preferring locations with multiple individuals regardless of their foraging
status. Since there is little to no change in social movement strategies, we did not
expect nor find changes in ecological outcomes.
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Figure 5.14: No evolutionary change in social movement strategies when novel pathogen
introduction events are relatively uncommon. (A) In our alternative implementation of the
model, the pathogen is only introduced sporadically after the initial introduction (G = 3,000; red
line in panel B). (B) When the introductions are relatively rare and sporadic, there is no shift in
the mixture of movement strategies after pathogen introduction. The agent tracking strategy
remains common across parameter combinations.
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We can only see a short distance ahead, but we can see plenty there that needs to be

done.

- from Computing Machinery and Intelligence, by Alan Turing.

Abstract

Movement ecologists have taken up the challenge of inferring animals’ decision-
making mechanismes in a spatial context from individual tracking data. The im-
plicit assumption is that differences in the movement paths of animals reflect
differences in individual decision-making mechanisms. However, animal move-
ment takes place in complex and rapidly changing environments, where move-
ment cues are not always available, and animals may differ along multiple axes of
behaviour. Mechanistic, individual-based modelling of animal decision-making
can help investigate whether differences in decision-making mechanisms actually
translate into differences in movement paths, and the insights gained by parsing
animal tracking data using contemporary statistical methods. To show how such
amodel can be used to investigate statistical methods, we explore a contemporary
question in movement ecology: Can individual differences in movement decision-
making mechanisms be detected from the emergent properties of the resulting
movement paths? Using data on the movement of evolved model agents, we
show how adopting a repeatability framework to quantify individual-differences
in movement is sensitive to the evolutionary context in which movement rules
evolve. We also find that repeatability analysis can yield very different conclu-
sions depending on how individuals’ behavioural types are accounted for. We also
show that step-selection analysis can indicate differences between competition
strategies, but rarely captures differences between movement types of the same
competition strategy. Overall, using a plausible eco-evolutionary model of animal
decision-making, we highlight some challenges in using contemporary statistical
methods to infer individual differences in animals’ decision-making mechanisms
from positioning data.



PROBING STATISTICAL MODELS

Introduction

NIMAL movement is understood to be an individual response that integrates
multiple internal and external stimuli, including environmental conditions
and the presence of other animals (Nathan et al. 2008). Various aspects of animal
movement, such as the distance moved over time (speed), or the tortuosity of an
animal’s path, are now readily measured and quantified in free-living individuals,
given significant advances in animal tracking technology (Cagnacci et al. 2010:
see Nathan et al. in prep.). This makes movement a sort of ‘model behaviour’
that allows investigation of the underlying mechanisms — the ‘how’ and ‘why’ of
animal decision-making — under natural conditions that cannot be replicated in
experimental settings. For example, tracking individual greenbuls Phyllastrephus
sp. in forested landscapes revealed that greenbuls moved more frequently to
trees that were actually visible from their position, rather than trees that were
obscured from view, indicating that visual cues are important in the movement
decisions of forest birds (Aben et al. 2021: see also ). This illustrates a general
tactic in animal movement studies, which is to treat an animal’s use of a resource
disproportionate to its availability (Fortin et al. 2005; Manly et al. 2007; Signer
et al. 2019), or prolonged residence in an area (Bracis et al. 2018) as indicators of
adaptive movement decision-making mechanisms. Simple simulation models
show that differences in movement patterns — such as path metrics, or emergent
social interactions — may reflect underlying differences in movement strategies
(Spiegel et al. 2017; Spiegel and Pinter-Wollman 2022; Stuber et al. 2022).

Both differences in movement strategies, or the mechanisms controlling move-
ment (Spiegel et al. 2017), and differences in movement paths, which are the
outcomes of movement mechansims (Abrahms et al. 2017; Hertel et al. 2021), are
interpreted as facets of animal personality (Sih et al. 2004a,b). Increasingly how-
ever, animal personality, or consistent individual differences in behaviour, are
studied in empirical terms, and considered to be detected in a population when
its behavioural responses possess certain statistical properties (Sanchez-Tojar
et al. 2021). In the context of animal movement, researchers apply sophisticated
variance-partitioning approaches to common movement metrics — such as daily
distance moved — and aim to determine how much behavioural variation in a
population is explained by individual identity, rather than conditions that di-
rectly influence behaviour (e.g. diel cycle, temperature), or variation due to other,
un-examined factors (e.g. weather differences between intervals) (Hertel et al.
2019; 2020; 2021). Another approach to investigate individual animals’ decision-
making mechanisms is to estimate their relative preferences for environmental
conditions using step-selection analysis (Fortin et al. 2005; Thurfjell et al. 2014;
Avgar et al. 2016; Signer et al. 2019; Fieberg et al. 2021: see also resource selec-
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tion analysis: ). Step-selection analysis compares environmental cues between
animals’ real steps — the movements actually made, and their alternatives — the
movements that could have been made, from the same starting location (Thurfjell
et al. 2014; Fieberg et al. 2021). The relative selection strengths, which are the
coefficients of a step-selection function, can be compared between individuals
(Thurfjell et al. 2014), and should be expected to be different for individuals with
different movement decision-making mechanisms.

However, it is unclear whether individual consistency in the mechanisms un-
derlying movement strategies can really be identified using current statistical
tools (Spiegel and Pinter-Wollman 2022; Stuber et al. 2022). Most researchers
realise that there is a substantial gap between the environment animals perceive
and to which they respond, and the often static representation of that environ-
ment that is measured in tracking studies (Spiegel and Pinter-Wollman 2022).
For example, resources that are critical to animals are often ephemeral, and dif-
ficult to measure with both a high spatio-temporal extent and resolution using
existing technologies such as remote sensing, leading researchers to fall back on
more long-term resource proxies such as vegetation indices (Pettorelli et al. 2011).
This issue is likely even more acute in the case of movements that have a social
context, such as competition, as the social environment is expected to change
even more rapidly than resource distributions, and to be even more sensitive to
local consumer densities. Consequently, it may be difficult to determine whether
differences in movement reflect underlying differences in decision-making mech-
anisms, or whether they better represent stochastic differences in environmental
conditions encountered by animals (Spiegel and Pinter-Wollman 2022). Applying
current methods in animal movement ecology to individual-based simulation
models of animal movement strategies (see e.g. Getz et al. 2015; 2016; Netz et al.
2021b) can help explore whether these methods can reliably detect individual
differences in movement decision-making mechanisms.

Mechanistic models of intermediate complexity can simulate the main features
of many spatial systems, such as heterogeneity in landscape productivity, and
resource depletion due to mobile consumers (Getz et al. 2015; White et al. 2018b;
DeAngelis and Diaz 2019; Diaz et al. 2021; Netz et al. 2021b). Here, we work with
an evolutionary, individual-based model of agent movement in the context of
intraspecific competition (both exploitation and interference, as described in
Chapter 4). In our model, agent movement is the outcome of the interplay of
simple movement decision-making mechanisms, a fluctuating resource land-
scape, and due to agent movement, a variable social landscape. Agent movement
strategies are controlled by their preferences for environmental cues, such as
resource and competitor densities (see e.g. Getz et al. 2015; White et al. 2018b;
Netz et al. 2021b). These preferences may be thought of as the coefficients of
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resource- or step-selection functions (White et al. 2018b). Importantly, in con-
trast with purely ecological models (e.g. White et al. 2018b), agents’ preferences
are outcomes of many generations of natural selection (see also Getz et al. 2015;
Netz et al. 2021b). We previously showed that in two scenarios of exploitation
and interference competition, differences among individuals in how they assess
local environmental cues evolve.

We tackle three specific aspects of a general question in animal movement:
what can applying statistical tools to animal tracking data tell us about individual
differences in the movement decision-making mechanisms? (1) We first exam-
ine whether different movement types are indicated by simple exploratory data
analysis. (2) We then investigate the results of a variance-partitioning approach
(repeatability analysis; Nakagawa and Schielzeth 2010; Hertel et al. 2019) to
detecting individual differences in populations with different movement types
and competition strategies. (3) Finally, we attempt a novel application of step-
selection analysis to the study of consistent individual differences in movement
strategies. Overall, by treating a simulation model with simple movement rules as
we would empirical animal-tracking data, we aim to explore whether individual
differences in movement decision-making mechanisms can be reliably inferred
from the emergent structure of animal movement paths.

Methods

Basic Model Setup

We worked with an individual-based evolutionary simulation model of animal
movement in a foraging context, previously developed for use in Chapter 4. We
describe the model’s ecological dynamics in brief here, and refer readers to Chap-
ter 4 for a more detailed exploration of the evolutionary outcomes. Our model
simulates a population with a fixed size (10,000 individuals), moving on a finely
gridded landscape of 5122 cells; this is a population density of 1 individual for
every 26 cells. The landscape is wrapped at the boundaries so that individuals
passing beyond the bounds at one end re-appear on the diametrically opposite
side. The model consists of G generations (default = 250) of T timesteps (default
= 400); in each generation, individuals move and make foraging decisions to
gain intake. At the end of each generation, individuals reproduce and pass on
their movement and foraging strategies to their offspring, the number of which is
proportional to their intake in the 400 timesteps of their ‘lifetime’.

The cells of the gridded landscape each have a cell-specific probability r of
generating a discrete resource, which we refer to as ‘prey items’ (e.g. a mussel).
The cells are arranged into 1,024 regularly spaced clusters, or ‘resource peaks’, in
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which the productivity of cells at the centre of the peak (called r,,,,) is five times
greater than the cells at the periphery of the peak; resource peaks are approxi-
mately 16 cells away from each other. We ran the model with a default r,,,, of
0.01, and also at r,,,, values between 0.001 and 0.03, to examine the effect of
landscape. For an r,,,, = 0.01, the most productive cells (at the centres of a cluster)
are likely to generate one item per 100 timesteps (or four items per generation,
for T =400), while the least productive cells (at cluster peripheries) are likely to
generate one item every 500 timesteps (< than one item per generation, for T =
400). Cells in our landscape were modelled as having a uniform carrying capacity
K of 5 prey items, and while a cell is at carrying capacity its ris 0.

Individual Foraging and Movement

Agents can perceive a cue indicating the number of all prey items P in a cell,
but have a probability g of failing to detect a prey item, and a probability ¢ of not
detecting any of P prey items; foragers are thus successful in finding a prey item
with a probability 1 — g*. Individuals on a cell forage in a randomised sequence,
and the probability of finding a prey item (1-¢*) is updated as individuals find prey,
reducing P. Foragers that are assigned a prey item in timestep ¢ begin handling it,
and are considered to be handlers for the next T, timesteps, during which they
are immobile: this creates opportunities for kKleptoparasitism (Holmgren 1995).
Foragers that are not assigned a prey item are considered idle, and are counted as
non-handlers.

Agent movement is a fine-scale process comprised of small, discrete steps
of fixed size. These steps are the outcome of short-term individual movement
decisions, in which the agent selects a destination cell, after assessing potential
destinations based on available cues (similar to step selection or resource selection
Fortin et al. 2005; Manly et al. 2007), an approach used previously by Getz et al.
2015 and White et al. 2018b. In brief, individuals scan the nine cells of their
Moore neighbourhood for three environmental cues, (1) an indication of the
number of discrete prey items P, (2) the number of individuals handling prey H
(called ‘handlers’), and (3) the number of individuals not handling prey N (called
‘non-handlers’). Based on these cues, agents rank their neighbouring cells by their
‘suitability score’ S, where S = spP + s H + sy N, and move to the cell to which they
have individually assigned the highest suitability. The weighing factors for each
Ccue, sp, sy, and sy, are genetically encoded and and transmitted from parents to
their offspring. All individuals move simultaneously, and then implement their
foraging strategy to acquire prey.
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Scenarios of Intraspecific Competition

We considered two scenarios of intraspecific foraging competition, a process
that can strongly shape animal movement and population distributions (Fretwell
and Lucas 1970; Parker 1978). In the exploitation competition scenario 1, agents
move about on the landscape according to their movement rules, and find, han-
dle, and consume prey. Agents must handle each prey item for a fixed handling
time Ty (default = 5) before they gain its energetic value. Agents can be either
in the handling or searching state (Holmgren 1995). While handling, agents are
immobile and do not make any movements. Since there are no direct interactions
among agents, the only way in which agents can affect each others’ intake is by
acquiring prey items before their competitors. In this scenario, the only evolv-
able properties are the environmental cue weighing factors which determine the
suitability scores and hence agent movement (sp, s and sy).

In scenario 2, agents can either search for prey items (foraging), or steal a prey
item from a handler (Kleptoparasitism). Agents make movement decisions as in
the exploitation competition scenario, but their competition strategy (foraging
or kleptoparasitism) is fixed through life, genetically encoded, and heritable
between generations. For simplicity, agents are always successful in stealing from
a handler; however, if multiple agents target the same handler, only one of them,
randomly selected, is considered successful — thus kleptoparasitic agents also
compete exploitatively among themselves. Handlers that have been stolen from
subsequently ‘flee’ and are moved to a random cell within a Chebyshev distance
of 5. Having acquired prey, a kleptoparasite converts into a handler, but need
only handle prey for T, — t;, timesteps, where ¢, is the time that the prey has
already been handled by the previous handler; thus kleptoparasites save time
on handling compared to a forager. Unsuccessful kleptoparasites are considered
idle, and are also counted as non-handlers. Handlers that finish processing their
prey in timestep ¢ return to the non-handler state and are assessed as such by
other individuals when determining their movements.

Inheritance of Movement and Competition Rules

For simplicity, we modelled discrete, non-overlapping generations, with hap-
loid, asexually reproducing individuals. In the exploitation competition scenario,
individuals have three active gene loci that encode the decision-making weights
which control individual movement (sp, sy, sy). In scenario 2, individuals addi-
tionally inherit their competition strategy from their parent. We assume that the
expected number of offspring per individual is proportional to the individual’s
total lifetime intake of resources (hence resource intake is used as a proxy for
fitness). This is implemented as a weighted lottery (with weights proportional to
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lifetime resource intake) that selects a parent for each offspring in the subsequent
generation (see prior implementation in Netz et al. 2021b). Across scenarios,
the movement decision-making weights are subject to independent random mu-
tations with a probability of 0.001. The mutational step size (either positive or
negative) is drawn from a Cauchy distribution with a scale of 0.01 centred on zero.
This allows for a small number of very large mutations while the majority of muta-
tions are small. In scenario 2, agents have a probability of 0.001 of a mutation on
their competition strategy, i.e., of transforming from a forager to a kleptoparasite,
or vice versa. Agents are intialised at a random location on the landscape, po-
tentially forcing individuals to contend with different environmental conditions
from those experienced by their parent.

Agent Positions, Agent Preferences, and Landscape Data

We previously established that in our model, the mean per-capita intake sta-
bilises within 50 generations, and the fixation of certain movement rules (such
as the preference for handlers) is complete by generation 100 (see Fig. 1). We
wanted to determine whether agent path structure, and specifically, the distance
moved, also has a clear trajectory over generations. In order to do this, we focused
on the positions of 1% of the agents (N = 100) in each timestep, for every 10"
generation, up to generation 249 (25 generations, including G = 249). Overall,
we collected 400 x 100 x 25 = 1,000,000 positions over each simulation run. To
apply methods commonly used in movement analyses, we let the final generation
(G =250) run for 10,000 timesteps, and exported the positions of 100 agents in
each timestep, for a further 10,000 x 100 = 1,000,000 positions. We also exported
the decision-making weights for movement (sp, sy, sy) for each agent in the ex-
ploitation competition scenario, as well as the foraging strategy-decision weights
(wp, wy, wy, w,) for agents in the interference competition scenario; we aimed to
later relate these weights to the structure of movement paths.

Animal movement is strongly influenced by the landscape, and must be taken
into account to accurately compare among individuals. The cell r values may be
seen as analogous to empirically measured long-term indicators of productivity,
such as the normalised-difference vegetation index (NDVI; Pettorelli et al. 2011).
We took the known, fixed r values for each cell, and linked them to agent positions
as environmental covariates. Animals likely cannot always sense underlying
differences in the drivers of productivity of a resource landscape, but only an in-
dicator of that productivity, such as prey items. Nonetheless, long-term measures
are frequently used as predictors in step-selection functions, because they are
often easy to measure, and do have a mechanistic link with animal movement.
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Quantifying Model Ecological Outcomes

We first plotted the frequencies of the decision-making weights, scaled between
-1 and +1 using a hyperbolic tangent tranform, over the 250 generations of each
model run (see Fig. 6.1A). We then visually examined the population at the evolu-
tionary equilibrium for functional differences in movement rules. Since distinct
values, or morphs, of each weight might be correlated with distinct values of the
other two weights, agents with seemingly different absolute values of the three
weights could have the same relative preference for, or aversion to, a movement
cue. We did this by normalising each of the agents’ three movement weights
relative to the sum of the absolute values of the weights: W, = W,/(|sp| + |sg| + Isy]),
where W is any one of the movement weights, s,, s or sy. We refer to these
normalised weight values (ranging from -1, avoidance, to +1 preference) as the
relative preferences. Thus, for example, an agent prioritising movement towards
handlers would have a normalised value for s, close to +1, and sp and s;; = 0. To
visualise the spread of agents over the trait space, we plotted the scaled values of
sy against the scaled values of sp, colouring points by the scaled value of s, (see
Fig. 6.1A).

We classified the 100 agent paths exported in each simulation run based on the
agents’ relative preferences: (1) prey tracking, if sp > 0.55; (2) handler tracking, if
sy > 0.5; (3) prey & handler tracking, if sp > 0, sy > 0, |sp — syl > 0; (4) non-handler
avoiding, if sy < —0.5; (5) handler avoiding, if sy < —0.5; and (6) mixed, for all
other combinations. We plotted the distribution of total distance moved across
equal intervals for each of these five strategies (or those present in the evolved
populations; see Fig. 6.3). We also plotted the movement paths of individuals
from the strategies for a visual comparison of path structure and distance moved.

Repeatability of Agent Movement

When animals are challenging to assay in captivity, researchers may attempt
to detect individual consistency in movement behaviour from animal tracking
data alone (see a review in Hertel et al. 2020: see for an example). In this ap-
proach, a population is understood to comprise of ‘repeatable’ individuals if the
between-individual variance in behaviour is a substantial proportion of the to-
tal variation that is not explained by the fixed effects of a linear mixed model
(LMM Hertel et al. 2019). Individuals differing in behavioural mechanisms are
expected to make differing movement decisions when presented with the same
environmental cues; the cumulative and emergent effects of these decisions are
thus expected to be reflected in the tracking data. Consequently, a population
with differences among individuals in movement decision-making mechanisms
(‘movement types’) should be expected to be ‘repeatable’ in movement behaviour.
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This approach relies on repeated measures of an individual behaviour, such as
daily distance moved (Niemeld and Dingemanse 2018; Hertel et al. 2020). One
way of obtaining such repeated measures is by summarising behaviour over equal
time-intervals of an animal’s track (see e.g. Hertel et al. 2019). We investigated
whether our agents’ fixed movement decision-making weights would result in
high population-wide repeatability in movement behaviour, and specifically, in
the mean distance moved.

We tried to determine whether repeatability analysis could detect that there was
wide functional variation in the movement decision-making rules of our evolved
agents. To implement this approach, we divided agent paths from the final gener-
ation of 10,000 timesteps into 10 consecutive intervals of equal duration (1,000
timesteps each; similar to weeks), and calculated the mean distance travelled
over 100 timestep-long segments (similar to days) in each interval. Following
Hertel et al. 2019, we calculated the between-individual variance using linear
mixed models (LMMs) of the form

mean distance ~ 7 + (1]lidentity) + (1|interval) (6.1)

where the mean cell productivity 7 was taken as fixed effects to account for
differences in the environment experienced by each agent.

Knowing that our scenario 2 reliably results in a population with both fixed-
strategy foragers and kleptoparasites, we examined three ways of taking individ-
uals’ competition strategy into account when estimating repeatability. First, in
the basic model, we used the repeatability model specified above, in which we
ignored the differences in competition strategy among our agents. Second, in the
fixed effect model, we included the competition strategy of each agent (forager or
kleptoparasite) as a fixed effect in the model. Third, in the separate modelling
approach, we fit the basic model to the data from foragers and kleptoparasites
separately.

Across model formulations, We scaled the movement distance and the pre-
dictor variables between 0 and 1, for each interval of each simulation run. We
set individual identity and the time interval to be random intercepts, following
(Hertel et al. 2020). We fit separate GLMMs for each simulation run, and used the
rptr package in R (Nakagawa and Schielzeth 2010) to estimate the repeatability
of total distance in our agent population (bootstraps = 100; permutations = 10).

Individual Differences in Habitat Selection

Finally, we investigated whether individual differences in movement rules
would translate to differences in habitat selection, using a step-selection function
framework. Step-selection analysis essentially aims to determine why animals
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move where they do, given the alternative steps they could have made, by relating
the animal’s choice of step to differences in environmental conditions among the
alternatives (Thurfjell et al. 2014; Avgar et al. 2016; Signer et al. 2019; Fieberg
et al. 2021). When an SSF is fit to each individual’s tracking data, the estimated
coefficients of a step-selection function (SSF) are analogous to the agent move-
ment decision-making weights in our model (see previous interpretation in White
etal. 2018b). In empirical studies, it is difficult to measure the availability of fine-
scale environmental cues, such as the abundance of depleteable resources, or the
densities of conspecifics. One common solution to this challenge is to compare
selected and alternative steps on the basis of a slowly-changing environmental
measure such as productivity (e.g. NDVI, analogous to r Pettorelli et al. 2011), that
is broadly correlated with other phenomena. When correctly chosen, productivity
has a mechanistic relationship with other environmental cues: cells with higher
r should be expected to have more prey items by definition, and to attract more
competitors, following expectations from Ideal Free Distribution theory (Fretwell
and Lucas 1970; Parker 1978). Though animals likely cannot sense landscape
productivity directly (and our agents cannot sense r), analysing step-selection
in relation to productivity is still a common practice, and could help reveal rela-
tive differences among individuals’ selection for habitats, potentially indicating
variation in the underlying behavioural mechanisms.

We prepared the data for SSF fitting by reducing data volumes to make com-
putation faster: we thinned agent tracks to select only every 10™ position, and
selected 8 alternative positions for each ‘true’ step. We customised the method of
selecting alternative steps from the default implementation in amt (Signer et al.
2019): while accounting for the wrapped landscape, we selected eight cells within
a distance of 10 units from the agent position, since these are only locations to
which an agent could voluntarily move in 10 timesteps. We excluded the true
step end-point from among the alternatives, and considered remaining in place
to be a valid option. The resulting dataset consisted of the true and alternative
step coordinates for each step, to which we linked the the cell-specific r. We fit
a step-selection function for each individual separately in each simulation run,
relating whether a step was taken or not (the case, in amt parlance) to the value
of r. We used an SSF of the form:

case ~ r + strata(step identity) (6.2)

We visually investigated whether differences in selection strength for r were
revealed for populations with substantial polymorphisms in movement weights.
During earlier analyses, we had found that agents in the exploitation competition
scenario could be classified into three ‘movement types’, based on which weight
(sP, sN, sH) had the largest absolute value. We expected that agents whose largest
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weight was sp, the preference for prey-items, would have larger selection strengths
for cell r.

Results

Model Eco-Evolutionary Equilibrium

Both scenarios of our model — as expected from previous analysis — reached
an evolutionary equilibrium: a stabilisation of mean per-capita intake within 50
generations (index r,,,, = 0.01). The two scenarios differed strongly in terms of
the evolution of movement decision-making weights, again, as we already knew
from earlier investigation in Chapter 4. Briefly, in scenario 1, populations across
replicates rapidly and consistently evolved to prefer moving to cells with prey-
items (positive values of sP) and cells with handlers (positive values of s H) within
100 generations (Fig. 6.1A1). Populations also evolved to avoid non-handlers
(negative values of sN; Fig. 6.1A1). All replicates showed substantial variation in
the movement decision-making weights (Fig. 6.1A1). In scenario 2, we found
an eco-evolutionary equilibrium with stable proportions of the two competition
strategies. As might be expected then, the evolution of populations’ decision-
making weights was quite different from that of scenario 1. Agents had an evolved
preference for moving to cells with prey-items, and an avoidance of cells with non-
handlers (Fig. 6.1A2). However, there was a strong dimorphism in the response
to handlers, with most agents showing a strong preference for handlers, but with
a sizeable minority of agents showing an avoidance of handlers (Fig. 6.1A2).

The differences in evolved movement rules also translated to functional varia-
tion in relative preferences for the three environmental cues. In scenario 1, most
agents had a strong preference for prey-items, with a number of agents neutral to
the other two cues (large values of s, see Fig. 6.1B1). Nonetheless, many scenario
1 agents’ movement rules also incorporated social information in the form of the
presence of competitors, and these agents either avoided non-handlers (large
negative values of sy), or preferred to move towards handlers (positive values of
sy). In scenario 2, the two competition strategies differed dramatically in their
relative preferences for movement cues. Overall, most agents relied entirely on
social information — the presence and foraging status of competitors — and on
the abundance of prey-items almost not at all, when making movement deci-
sions (Fig. 6.1B2). Foragers sought to avoid all agents, with negative values for s
and s;;, but differed strongly in which, of handlers and non-handlers, were most
avoided. Kleptoparasites, on the other hand, were almost exclusively handler-
preferring, with strong positive values of s,. A small number of both foragers
and Kleptoparasites followed the movement rules of the opposite strategy; these
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likely represented a strategy mutation during reproduction, rather than a viable
combination of movement and competition strategies.

Our classification of agents based on evolved relative preferences for movement
cues revealed that most agents in scenario 1 were either prey-tracking, prey and
handler tracking, non-handler avoiding, or used a mixed strategy (Fig. 6.2A1). On
the other hand, agents in scenario 2 had a movement type strongly correlated with
their competition strategy: most foragers were either handler- or non-handler-
avoiding, while kleptoparasites were all handler-tracking (Fig. 6.2A2). We found
that movement distance was strongly linked to competition strategy, and did not
correlate with movement type, as foragers in both scenarios 1 and 2 had very
similar movement distances, regardless of their movement type (Fig. 6.2B1, B2).
Kleptoparasites, however, moved nearly twice as much as foragers in scenario 2
(Fig. 6.2B2).

Movement Cues, Competition Strategies, and Repeatability of Movement Distance

Our simulation’s populations, at the eco-evolutionary equilibrium (G = 250)
were comprised of individuals with a broad range of movement strategies (Fig.
6.3A).In scenario 1, a wider range of movement strategies were evolved on higher
productivity landscapes (r,,,, € 0.02, 0.03), than on lower productivity landscapes
(Inax = 0.01); the pure handler-tracking and handler avoiding strategies were seen
only at at higher growth rates (Fig. 6.3A1). This suggests that on higher pro-
ductivity landscapes, a wider range of movement types have equivalent fitness.
The mechanism enabling this is the increased abundance of prey-items: as more
agents find prey more easily and become handlers, the relative strength and fre-
quency of the handler cue increases, and navigating using this social information
alone becomes a viable movement strategy.

The repeatability of movement distance is nearly five times as high on more
productive landscapes (r,,,, € 0.02, 0.03; repeatability ~ 0.70), as on low pro-
ductivity landscapes (r,,,, = 0.01; repeatability = 0.15; Fig. 6.3B1). This large
difference may be because there are more movement types on high-productivity
landscapes (Fig. 6.3A1), with subtle differences in distance moved among them.
Yet, another plausible explanation is that on high productivity landscapes, there
are simply more movement cues, in the form of prey-items and handlers. Since
the movement types differ in how they process and respond to cues, movement
on landscapes with more cues might better reveal subtle differences among the
behavioural types.

In scenario 2, increasing productivity also allows a wider range of forager, but
not kleptoparasite, movement strategies (Fig. 6.3A2). At the index r,,,, 0f 0.01,
foragers are mostly agent avoiding, while kleptoparasites are handler tracking.
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Figure 6.1: Evolutionary equilibrium and functional variation in movement rules in a
spatially explicit, individual-based model of animal movement. We find substantial poly-
morphism in movement rules in both scenarios of our spatially explicit, individual-based model of
the joint evolution of animal movement and competition strategies. Agents in both (A1) scenario
1 (exploitation competition only), and in (A2) scenario 2 (fixed, individual competition strategies),
evolve multiple, distinct, co-existing values of each of the weights controlling movement rules
in the forms of preferences for each cue: s, (prey-items), s, (agents handling prey, ‘handlers’),
and sy (idle agents, ‘non-handlers’). The morphs persist across generations, indicating that they
likely have equivalent foraging success, and hence, fitness outcomes. (B1) In the exploitation
competition scenario, the evolved population (at G = 250; blue line in panels A1l and A2) has
wide individual variation in their relative preferences for environmental cues (the scaled weights
sp, Sy Sy)- Most agents trade a preference for prey-items against either an avoidance of non-
handlers (orange points), or a preference for handlers (yellow points with s, > 0.5). (B2) In the
fixed-strategy scenario 2, agents of the two competition strategies (foragers and kleptoparasites)
have very different relative preferences for environmental cues. While foragers largely either
avoid handlers (yellow points, s < —0.5), or avoid non-handlers (red points), most kleptoparasites
prefer moving towards handlers, their direct resource. A small number of both foragers and klep-
toparasites follow the movement rules of the opposite strategy; these likely represent a strategy
mutation during reproduction. All panels show simulation runs with r,,,, = 0.01, and show a
single replicate for clarity.

However, with increasing growth rates, the frequency of kleptoparasites decreases,
until, at r,,,,, = 0.03, kleptoparasites are extinct in nearly all simulation replicates.
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Figure 6.2: Movement types and competition strategies, and differences in movement

paths. We classified agents in both scenario 1 (A1) and scenario 2 (A2) into intuitive ‘movement

types’, based on their relative preferences for environmental cues (see Fig. 1 and Main Text).
We plotted them based on their weights for prey-items and handlers, adding a transparency to

show the frequencies of the types. By this simple classification, agents in scenario 1 (A1) mostly
track prey-items, or both prey-items and handlers, while avoiding non-handlers. Agents in the

‘mixed’ strategy mostly track prey-items and avoid non-handlers. In scenario 2 (A2), most foragers

avoid other agents, either handlers or non-handlers; meanwhile, Kleptoparasites, as expected,
track their primary resource, handlers. Regardless of their movement type, agents in (B1) the
exploitation scenario all move roughly the same distance in each interval. (B2) However, in
the kleptoparasitism scenario, the competition strategies differ strongly, with kleptoparasites
moving nearly twice as much as foragers. Despite moving according to quite different rules (avoid
handlers, or avoid non-handlers), both types of foragers move nearly the same distance on average.
While kleptoparasites’ greater movement should be expected to lead to less time for handling
prey, and hence lower intake, they save on this time by taking advantage of pre-handled items
stolen from foragers. Panels A1l and A2 show 5,000 individuals from a single replicate of each
scenario, while panels B1 and B2 show the mean movement distance of 100 agents over segments

of 100 timesteps from all 10 replicates.

Thus, on high productivity landscapes, the scenario 2 population is functionally
identical to the scenario 1 population, and all individuals follow a forager strategy.

Repeatability analyses on the movement distances of scenario 2 populations is
sensitive to how the differences in competition strategy are treated, but not to
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landscape productivity (Fig. 6.3B2). Specifically, (1) When repeatability analysis
ignores differences in competition strategy, our populations, comprised largely of
handler and non-handler avoiding foragers, and handler tracking kleptoparasites,
had repeatability scores > 0.8 (Fig. 6.3B2a). This would suggest that nearly all
the variance in movement distance not explained by the fixed effect of environ-
mental productivity is due to between-individual differences (which we know to
be primarily differences in competition strategy).

(2) When competition strategy is included as a fixed effect in repeatability analy-
sis, repeatability scores drop substantially to < 0.5 (Fig. 6.3B2b). This suggests
that while competition strategies are important in explaining differences in move-
ment distance, a substantial chunk of the unexplained variance is comprised of
between-individual variance.

(3) Finally, in another plausible way of treating data when the existence of compe-
tition strategies is known, running separate repeatability analyses for foragers and
kleptoparasites reveals very different repeatability scores for the two strategies
(Fig. 6.3B2c). While foragers have repeatabilities betwen 0.0 and 0.75, depending
on the growth rate, kleptoparasites have repeatabilities close to zero.

There did not appear to be an effect of landscape productivity as in scenario
1. This may be because, in scenario 2, the presence of kleptoparasites (indeed,
as the majority strategy) reduces prey-item extraction from the resource land-
scape. Consequently, all scenario 2 landscapes eventually resemble scenario 1
landscapes at r,,,,, = 0.03. We ran analyses only on growth rates of 0.01 and 0.02,
as kleptoparasites rapidly go extinct early on in simulations with a growth rate of
0.03 (see Chapter 4 for an explanation of the evolutionary dynamics).

Individual Differences in Habitat Selection

We fit 6,000 step-selection functions to thinned movement data from 60 simu-
lation runs, with 10 replicates for each r,,,, value (0.01, 0.02, 0.03) and scenario
(1 and 2). In scenario 1, all agents forage and have a substantial preference for
moving towards prey-items. Consequently, the estimated coefficients of their ap-
parent selection for cell productivity r are all positive, with no differences among
the movement strategies (Fig. 6.4A1, B1). On the other hand, in scenario 2,
the dramatic difference in competition strategies is reflected in the estimated
coefficients of apparent selection for cell r; foragers have substantially lower (and
even negative) selection for r than kleptoparasites (Fig. 6.4A2). However, there
is little difference between foragers moving mostly to avoid handlers or to avoid
non-handlers (Fig. 6.4B2). As landscape productivity increases, scenario 2 pop-
ulations, but not scenario 1 agents, show a shift in their selection for cell r. At
higher growth rates (r = 0.02), scenario 2 populations — still comprised of about
equal proportions of foragers and kelptoparasites (see Fig. 6.3) — show substan-
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Figure 6.3: Frequency of movement types, competition strategies, and environmental cues,
and consequences for repeatability analyses to detect individual differences in movement.
Increasing landscape productivity (r,,,,) beyond the index value of 0.01 leads to more prey-items
on the landscape, and hence more available cues for movement decisions. In (A1) scenario 1, this
leads to a change in the frequencies of movement types, with the persistence of handler-avoiding
and pure handler-tracking types. In (A2) scenario 2, the frequencies of both movement types
and competition types change with the increased availability of prey-items: at higher r,,,, (0.03),
foragers are both more common, and use more movement strategies, than at lower r,,,, (0.01). The
repeatability of movement distance is greater for scenario 1 populations on landscapes with higher
T'max» @ad hence more available movement cues (B1). This suggests that individual differences in
movement decision-making mechanisms may be more readily detected when agents are actually
able to process environmental cues using those mechanisms, rather than when agents move
on relatively ‘clueless landscapes’. When agents’ competitive strategy strongly influences their
movement, as in scenario 2 (B2 panels), repeatability analyses are strongly affected by how this
difference is treated. (B2a) If differences in competitive strategies are not included in the model
formulation, repeatability scores are consistently high (> 0.9). (B2b) When agents’ competitive
strategy is included as a fixed effect, repeatability scores are substantially lower (< 0.5). Finally,
(B2c), repeatability models run separately for each of the competitive strategies would essentially
reveal that competitive types with strong dimorphism (or clustering) in movement types (here,
foragers) have a higher repeatability than competitive types with a monomorphic movement
strategy (here, kleptoparasites). Panels A1 and A2 show frequencies pooled over 100 agents from
10 replicate simulations, with agent data exported at G = 200, 210, ...249. Panels B1 and B2 used
long-term movement paths from 100 agents in generation 250, over 10 replicates. B2 omits r,,,,,
=0.03, as kleptoparasites are often extinct.

tially more overlap between the two strategies’ selection for r (Fig. 6.4A2). This is

carried over as an overlap between the three main movement types (Fig. 6.4B2).

At the highest growth rates, scenario 1 and scenario 2 populations are essentially
identical, and the few kleptoparasites remaining in scenario 2 apparently select
for r similar to foragers. Overall, applying step-selection analysis to our model
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output suggests that differences between competition strategies, when associated
with different movement types, could be revealed under certain conditions from
animal movement paths.
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Figure 6.4: Movement types and competition strategies revealed in step-selection analyses.
Applying step-selection analysis to long-term movement paths from (A1) scenario 1, and (A2)
scenario 2 reveals strong differences in apparent selection for landscape productivity between
competition strategies (r,,,. = 0.01). In (B1) scenario 1 and (B2) scenario 2, the apparent selection
strengths for productivity r of foragers of different movement types overlaps. Handler-tracking
kleptoparasites in scenario 2, too, have apparent selection strengths for r that overlap with those
of some foragers, but which are substantially higher than those of most foragers, which avoid
both handlers and non-handlers. These essentially opposing movement strategies are picked
up as differences in selection for r. Kleptoparasites track handlers, and the probability of a
forager finding prey and handling are higher at the centres of resource peaks, i.e, cells with high
r. Conversely, foragers avoid other agents, and since high-productivity cells are more likely to
have agents, they apparently select against high productivity cells. All panels show selection
coefficients from 100 agents’ long-term movement paths at G = 250, from 10 replicates of each
simulation; only coefficients with p < 0.05 are shown.
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Lessons for Data Analysis from the Performance of
Statistical Methods on Simulated Data

We used an evolutionary individual-based model of animal movement decision-
making under two scenarios of foraging competition (Kleptomove; as described
here and in Chapter 4), to investigate what we can learn about individual-differences
by applying statistical analyses to animal movement data. Our evolved agent
populations showed substantial between-individual differences in their relative
preferences for environmental cues (‘movement types’; Getz et al. 2015): when
presented with the same cues, agents could make substantially different decisions
about where to move. We showed that despite very different relative differences
among the movement types for environmental cues, the types did not consis-
tently differ in their movement distance. However, in our scenario 2, in which
individuals had a fixed competition strategy (forager or kleptoparasite), Kleptopar-
asites moved much more than foragers. With few between-type differences in
movement distance, the repeatability of movement distance was low in scenario
1 at low growth rates, but increased substantially at higher growth rates. In sce-
nario 2, not accounting for differences in competition strategy led to repeatability
scores ~ 1.0, but correcting for these differences led to lower repeatability scores.
Finally, applying step-selection analysis to estimate agents’ apparent selection
for landscape productivity showed no differences among movement types in
scenario 1, but revealed clear differences between competition strategies (and
their correlated movement types) in scenario 2.

Variation Among Movement Types and Competition Strategies

The co-existence of multiple movement types across multiple generations of
scenario 1 suggests that multiple alternative movement rules are equally good
for navigating our fluctuating resource and social landscapes (see also Getz et al.
2015; Netz et al. 2021b). That movement types travel roughly the same distances
is not surprising, as they must spend the same time handling, and gaining intake,
to have equivalent fitness. In scenario 2, there are essentially only two viable
movement types that are strongly correlated with competition strategies at low
growth rates (r,,,, = 0.01). Here, the handler-tracking kleptoparasites move more
because their primary resource, handlers, are scarce; conversely, foragers move
less, as prey-items are abundant. Yet both strategies have equivalent fitness
because kleptoparasites make up for lost time by having to handle stolen prey-
items for a shorter duration. We suggest that for movement types to differ in
their path metrics (e.g. distance, or speed; see Abrahms et al. 2017), between-
individual variation and within-individual consistency along a further axis of
behaviour that equalises fitness between the types is likely necessary.
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Repeatability Analysis

Repeatability analysis of the scenario 1 movement paths showed that popula-
tions evolved on higher productivity landscapes had significantly higher repeata-
bility scores. The major difference between lower (r,,,, = 0.01) and higher produc-
tivity landscapes (r,,,, = 0.03) is that the latter have many more prey-items per cell.
While agents on low growth rate landscapes often encounter areas with few or no
movement cues (‘clueless regions’; Perkins 1992), this is much more rarely the
case on high productivity landscapes. Since our agents’ decision-making mech-
anisms — in common with animal cognitive systems — require environmental
cues to make movement decisions, between-individual differences in movement
are more readily detected on landscapes with more movement cues (see Carter
et al. 2013b). Our result might suggest that populations with different movement
types transplanted between information-poor and information-rich landscapes
would show a marked increase in behavioural consistency. We caution against this
interpretation, as our populations have evolved, rather than simply been tested
on, landscapes across a productivity gradient. On high productivity landscapes,
a wider range of movement types is evolved, highlighting how measures such as
repeatability are linked to the evolutionary trajectory of populations.

Using scenario 2, we illustrated three different ways of implementing repeata-
bility analysis for a population with correlated differences in movement type and
competition strategy. When differences in competition strategy were ignored,
repeatability scores were close to 1.0, as the variance in movement distance
due to competition strategy was picked up as between-individual variance in-
stead. Adding competition strategy as a fixed effect to the analysis resulted in
lower repeatability values; this was expected, as differences among competition
strategies explain the bulk of the variance. Finally, performing separate repeata-
bility analyses for foragers and kleptoparasites yielded very low repeatability
scores for kleptoparasites, which foragers were still quite repeatable. This last
result is potentially because Kleptoparasites are solidly monomorphic in their
movement type, while foragers may be either handler- or non-handler-avoiding,
and this difference in decision-making mechanism could result in subtle differ-
ences in movement metrics. Overall, we suggest that extremely high repeatability
scores might indicate that an important source of variation is not being taken
into account, and should be sought for. Multivariate methods can help identify
within-individual behavioural co-variation in movement metrics, such as dis-
tance and displacement (Hertel et al. 2019; 2021). This approach could help
reveal strong associations between movement types and competition strategies,
as in our model, or responsiveness to social cues (Strandburg-Peshkin et al. 2015).
Identifying such behaviours from animal movement data is likely to require very
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high-resolution tracking and associated computational methods (Nathan et al. in
prep.).

Individual Differences in Habitat Selection

In a novel application of step-selection analysis to the study of individual dif-
ferences, we showed that agents of different competition strategies (scenario 2),
but not of different movement types (both scenarios 1 and 2), had diverging se-
lection for environmental conditions. An important reminder is that our model’s
agents cannot actually detect cell productivity r, and therefore the preference
for r values is more correctly termed apparent selection. This situation parallels
empirical analysis of animal tracking data, in which researchers commonly use
long-term indices of environmental conditions (e.g. NDVI; Pettorelli et al. 2011)
to approximate the ephemeral movement cues actually encountered and acted
upon by individuals. Nonetheless, strong between-individual differences (here,
in competition strategy) are likely to be reflected in animals’ apparent selection
for environmental conditions. In our model, the difference in apparent selection
arises from the distribution of movement cues relative to cell growth r. Handler-
tracking kleptoparasites have a higher selection for r because high-r cells are
more likely to have handlers, since foragers are more likely to find prey-items
there and begin handling. On the other hand, agent-avoiding foragers have a
lower selection for r as they avoid resource peaks, which are more likely to have
more agents. Some foragers will always be found on high-r cells, as even a forager
moving across the landscape at random (which they do not) is more likely to stop
and begin handling on a high-r cell than a cell at the periphery of a resource peak.

Individual-based Models as a Check on Statistical Methods

Individual-based models are not new in movement ecology, and are increas-
ingly used and prescribed to better understand animal movement (see a review
in DeAngelis and Diaz 2019). Such models have been used to illustrate the impor-
tance of animal movement to phenomena such as disease outbreaks (White et al.
2018b), and sympatric speciation (Getz et al. 2015), while also showing how indi-
vidual differences in animal movement strategies can have downstream effects
on population-level phenomena such as habitat-selection and social interactions
(Spiegel and Crofoot 2016; Spiegel et al. 2017). There is also a rich tradition
of individual-based models being used to assess the performance of methods
intended for use on empirical tracking data. For example, Gurarie et al. 2016,
Michelot et al. 2016, and Patin et al. 2020 simulated the paths of individuals with
different behavioural modes to test the performance of tools to detect behavioural
change-points, where the animal switches from one movement mode to another.
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However, very few individual-based models that are used as checks on statisti-
cal methods actually model the fine-scale decisions — comprising comparisons
among, and eventual selection of — steps that comprise animal movement (but
see recently Vissat et al. 2021). This is at least partially because few statistical
methods seek to estimate animal movement preferences, and by implication,
animal cognitive processes, at such fine scales. Step-selection analysis has the
potential to be among these methods, as it directly links what animals actually
perceive, to where they go (see recently Aben et al. 2021). This allows a fine-scale
comparison between selected and alternative steps, which, at certain scales, may
functionally approximate individuals’ cognitive processes, at least in terms of
preference or avoidance.

Our model and other mechanistic individual-based models that follow similar
principles (Getz et al. 2015; 2016; Netz et al. 2021b), allow for the implementation
of different movement decision-making mechanisms at very fine scales, in biolog-
ically plausible ways. Our agents’ movement decisions integrate locally available
cues to make adaptive movement decisions, just as real animals are expected to
do (Nathan et al. 2008). While our agent responses are linear, they can in principle
be much more complex, including convoluted relationships between the envi-
ronmental cues, as well as separate weights for each cue combination. Coupled
with the ability to know the state of the environment, and of each agent, at any
point in the simulation, we believe this and other similar models are suitable for
the testing of a range of empirical methods. For example, a better test of whether
step-selection analysis can determine agent preferences for environmental cues,
and individual differences therein, could involve the dynamic logging of selected
and alternative steps, as well as the environmental covariates (prey-items and
competitors) at those steps, in order to compare between them at fine scales. Such
logging would immediately reveal that often, agents have either very few direct
local cues, or very few differences between conditions at alternative and selected
steps, on which to base movement decisions at fine timescales relatively clueless
regions, per Perkins 1992. This highlights a potential challenge to such analy-
ses from the ever increasing resolution of animal tracking and environmental
monitoring data; for example, how should step-selection analysis be adapted to
account for high spatial- and temporal-autocorrelation in animals’ environments,
while still taking advantage of high sampling frequencies.

Conclusion

The analysis of our model’s agent movement paths using contemporary sta-
tistical tools from movement ecology showed that it is often challenging to infer
animals’ decision-making processes, or even relative differences among individu-
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als, from tracking data alone. First, when seeking to assess individual consistency
and between-individual differences from animal tracking data, it is key to include
predictors that have a mechanistic relationship with the behavioural response
being studied. For species that are only poorly known, or difficult to study in
captivity, this requires first collecting substantial knowledge on natural history
and behavioural biology. Researchers could potentially apply a model selection
approach (Burnham et al. 2011), to determine which fixed effects are best suited
to their study species. Second, uncovering individual behavioural tendencies in
captivity may not be sufficient to describe animal movement in natural environ-
ments, which is likely to be affected by fine-scale fluctuations in resources, as
well as the social environment. Finally, attempting to recover animals’ movement
preferences at fine scales is a challenging task. In part, this is due to a mismatch
of scales: empirical researchers are rarely able to study fine-scale movement
decisions, because suitably fine-scale data on the environmental cues that go
into these decisions are not available. While increasingly high-resolution animal
tracking is becoming more common, there would need to be a concurrent increase
in the resolution of environmental monitoring from the animal’s point of view.
The availability of such data sources would make the development of statistical
tools that account for particular issues — such as spatio-temporal autocorrelation
— a priority in movement ecology. Individual-based models, in which simple
mechanisms can give rise to substantial complexity in animal movement and
population distributions, could be very useful as test-beds to investigate whether
current and upcoming tools are truly capable of parsing patterns to recover the
underlying processes.
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Chapter

A Brief Reflection on this
Thesis

Pratik R. Gupte

Not all those who wander are lost.

— from the works of J. R. R. Tolkien

HIS thesis, as the abstract promises, is relatively episodic, and the various
chapters are only loosely tied together inasmuch as they discuss different
aspects of animal behaviour. Nonetheless, I hope to have put forward a cogent
view of one approach to studying animal movement — this approach is essentially
to take as mechanistic a perspective as possible. Here, I reflect upon the findings
and methods in this thesis.

Reflections on Part I

Part I of this thesis took an empirical approach to animal movements and
space-use. Animal movement ecology has benefited greatly from the adoption of
advanced animal tracking technology, and especially from the proliferation of GPS
loggers (Cagnacci et al. 2010). Yet the majority of species of birds and mammals
(leave alone reptiles or amphibians) cannot currently be tracked because most
high-resolution loggers are much too heavy for them to bear safely (Kays et al.
2015). High-throughput tracking systems — which Nathan et al. (2022) described
— such as ATLAS with its lightweight tags, can allow researchers to achieve at
regional scales a far more detailed understanding of animal movement than
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sought by WikelsKi et al. (2007) when floating the idea of ICARUS (see now Jetz
et al. 2022). Yet data from these systems is not as conservatively ‘cleaned’ as
that from GPS tracking, and this is because the original end uses of each of these
systems are very different.

In Chapter 2, I showed how a set of simple techniques and workflows can be
used to substantially improve the quality of raw ATLAS data. Beardsworth et al.
(In press) have now shown that the accuracy of ATLAS systems (in this case, the
Wadden Sea ATLAS system; Bijleveld et al. 2021) — after applying my cleaning
methods — is comparable to GPS tracking, but with a much higher sampling rate.
An interconnected network of such high-throughput systems could represent
one option for how animals could be tracked at high spatio-temporal resolution
at large, continental scales (Nathan et al. 2022). The methods that I set out
in Chapter 2 were borrowed from a range of fields that have already made the
transition to being ‘big data’ disciplines; among them, remote sensing of the earth,
and molecular biology and biochemistry (Peng 2011; Gorelick et al. 2017). It is
entirely unclear whether, and to my mind actually unlikely, that the full extent
of these recommendations (version control, open science, well tested pipelines)
will be adapted by the majority of researchers. This is simply because the correct
incentive structures to promote their adoption are currently quite weak.

In Chapter 3, I used data from the original ATLAS system deployed in the Hula
Valley in Israel, to study how moult — the loss and regrowth of flight feathers
— affects bird movement and habitat selection. This project demonstrates how
data from more developmental versions of high-throughput systems can be made
usable by robust filtering and cleaning. I found that birds, regardless of their moult
status, strongly avoid open areas which they presumably perceive as having a
higher risk of predation. This finding is interestingly in contrast with an example
presented in the Introduction: small southern African herbivores actually prefer
open areas when seeking to avoid predation, as unlike with birds, it is mammalian
predators rather than prey that use cover to ambush their prey (Le Roux et al.
2018). This highlights the challenges in generalising even broad findings about
movement across taxa. Within birds, however, my results are in line with recent
findings that flight characteristics affect whether bird species will risk crossing
even narrow open tracts, such as forest roads (Claramunt et al. 2022).

The results here suggest that predation risk avoidance could be a possible
mechanism by which some areas that appear productive become unsuitable for
many bird species — agricultural fields for instance provide little cover from aerial
predators. Birds have long been anecdotally known to avoid certain features
such as water bodies despite being powerful flyers, to the extent that this has
prevented entire groups from colonising archipelagos in the absence of land
bridges (Diamond 1981). This effect is now much better quantified by studying
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the migration of raptors across open water (Nourani et al. 2020). Both road- and
water-crossing avoidance seem bizarre to human observers, possibly because
as a terrestrial species, we subconsciously think of flight as a certain kind of
invulnerability, whether from environmental hazards or active hunters. Itis much
more likely that we simply do not — and perhaps cannot — really appreciate how
complex flight is, and the many risks it holds. One of the main conclusions of
Chapter 3 (and of Part II), then, is the importance of adopting the perspective of
the study species, the individual in its context, when seeking to understand the
short- and long-term drivers of animals’ behaviour.

Reflections on Part IT

In Chapter 4, I showed how animal movement and competition strategies
jointly evolve, using an individual-based model with 10,000 individuals moving
about on a grid of over 250,000 cells — among the largest IBMs in this field of
study. The model demonstrated a number of interesting outcomes that could
form the basis for future work. For instance, I showed that individual variation in
preferences for environmental cues reliably evolves in simple foraging contexts,
without apparent trade-offs in foraging strategies, and that social information is
key to moving and foraging in consumer populations. When individuals can adopt
a kleptoparasitic strategy, they may do so even when environmental cues indicate
that a ‘producer’ strategy (Beauchamp 2008) might be more suitable. In this sense,
certain competition and foraging strategies may actually represent ‘personalities’
as they were originally conceived of — suboptimal choices despite countervailing
information (Sih et al. 2004a). Unlike other chapters in this thesis, I cannot
be sure that this one will lead to substantial developments in eco-evolutionary
theory, and see it more as a culmination of theory in the once-key field of foraging
competition studies.

Chapter 6 is a direct development of of Chapter 4, even though it is presented
later. Here, I adapted movement paths generated in Chapter 4 to investigate
popular statistical tools in movement ecology: repeatability analysis, and step-
selection analysis. Inferring processes (mechanisms) from observed patterns
(phenomena) is a common pursuit in movement ecology. My analysis shows
that there are substantial risks to doing so naively — spatial personalities (Stuber
et al. 2022) may actually result from underlying differences in movement and
competition strategies. This highlights the importance of a detailed natural
history understanding of the study species and its ecological context.

Finally, in Chapter 5, I tackled a scenario that is expected to become increasingly
common — the transmission of novel pathogens from one species to another
(Carlsonetal.2022a). Indeed currently the hitherto poorly known tropical African

207



208

CHAPTER 7

disease monkeypox is currently breaking out in multiple countries where it is
not usually found, with the key risk that it could become endemic in rodent and
other animals in those regions. Additionally, SARS-CoV-2 has seen multiple
introductions to animals, including abundant wildlife such as deer in the United
States (Kuchipudi et al. 2022), and the H5N1 strain of avian influenza has been
spreading through multiple temperate species, primarily of shore- and seabirds
(Wille and Barr 2022). My relatively simple model of the trade-off between social
information use (in a foraging context), and the risk of pathogen transmission
generated clear predictions for how such novel pathogen introductions should
affect the evolution of host sociality. Worryingly, a cascading effect of decreased
host sociality in most scenarios could be poorer ecological performance in terms
of harvesting resources from the landscape, leaving populations vulnerable to
other environmental risks.

The potential consequences for an ecological community other than the species
directly affected by pathogens are borne out by Monk et al. (2022), who studied
the effects of the introduction of mange to vicufias in Patagonia. The scenarios I
modelled may actually be too mild, and novel pathogen spillovers could extermi-
nate their hosts, rather than force the evolution of less gregarious social systems.
The scale of future work required in this field is daunting: identifying outbreaks as
they happen, often in remote areas and involving poorly known species; determin-
ing patterns of species’ spatial overlap that could aid cross-species transmission
beyond the initial spillover; determining which species — for a range of reasons
— may be at heightened risk from an epi- or panzootic outbreak; and finally,
determining a response that preserves species while minimising risk of further
spillover.

The Role of Models in Understanding the Evolution of
Movement

The issue of how to use individual-based models to understand the (evolution
of) mechanisms underlying empirical data from animal tracking studies is not
new. One approach has been to use IBMs to generate ecological patterns (‘pattern-
oriented modelling’; Grimm et al. 2005), with quasi-evolutionary processes used
to fine tune the IBM parameters (Hamblin 2013). In Nathan et al. (2022), a recent
review of approaches to modern animal tracking data, we wrote,

Using genetic algorithms, initial candidate rulesets for individual
decision-making can evolve into a robust ruleset that is able to repro-
duce the unique range and quality of spatial and temporal patterns
in high-throughput data (“reinforcement learning’) [emphasis mine].
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This approach seeks to recover patterns seen in real empirical data from sim-
ulations, with the hope that the simulated mechanisms (‘candidate rulesets’)
that produced them are similar to those animating real individuals (‘true mecha-
nisms’) — this is the essence of ‘pattern-oriented modelling’ (Grimm et al. 2005).
However, a wide range of behavioural mechanisms can produce very similar
ecological phenomena, making it difficult to determine whether the ‘true’ mecha-
nism is approximated by any of the candidate simulated mechanisms. Essentially,
it is challenging to determine processes from patterns (as I have alluded to in
Chapter 6).

Open questions also remain about how rulesets, or mechanisms, should be
encoded in models. Habitat selection rules which are complex functions of the
information available to individuals are likely to be challenging to interpret. For
example, movement decisions based on outputs computed by artificial neural
networks were first proposed over a decade ago (Mueller et al. 2011), but they have
not seen widespread adoption in the ecology and evolution literature (but see Netz
et al. 2021b). One approach to interpreting the strategies encoded by complex
functions is to use sophisticated clustering algorithms to detect distinct combina-
tions of function coefficients (weights in a neural network) (Bastille-Rousseau and
Wittemyer 2019). The potential stumbling block here is that the methods required
for such clustering are also not native to ecology and evolution, and themselves
suffer from being much too complex to interpret for a general biologist audience
(see e.g. the GigaSOM method for clustering single-cell cytometry data; where
SOM is a ‘self organised map’, a form of machine learning Kratochvil et al. 2020).

Furthermore, it is also unclear how these mechanisms should undergo evolu-
tion — in Nathan et al. (2022), we suggested using both genetic algorithms and
reinforcement learning acting on the simulated mechanisms, based on the simi-
larity of simulated movement paths with real animal movements. The concept
of genetic algorithms and reinforcement learning is borrowed from the fields of
artificial intelligence and computer science, and represents their idea of biolog-
ical processes (evolution and learning, respectively DeAngelis and Diaz 2019).
However, these approaches are explicitly designed with a specific goal in mind,
and the success of agents employing these algorithms can be — and is — usually
measured using single, simple metrics (e.g. classification accuracy, task com-
pletion time). This solution-oriented approach of artificial intelligence is poorly
suited to ecology and evolution, in which there are no single correct solutions
— and in which, moreover, individuals interact not only with the environment,
but also with each other, making ‘optimal’ solutions heavily dependent on local
ecological contexts. Consequently, I believe that neither the implementation of
genetic algorithms such as ‘simulated annealing’ (Getz et al. 2015), nor the use of
reinforcement learning is a good choice for conceptual eco-evolutionary models.
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Throughout the latter part of this thesis, I have proposed a different way forward:
rather than working backwards from empirical phenomena to potential mecha-
nisms, to instead work forwards from plausible mechanisms to potential emergent
outcomes. This first requires a change in perspective on individual-based models,
from being highly detailed simulations of specific empirical systems (such as in
Stillman and GosscCustard 2010; Bocedi et al. 2014; Diaz et al. 2021), to being
used to obtain broad conceptual insight into ‘What if ...?°" scenarios. Such concep-
tual implementations, in addition to being demonstrated below, are also included
in Chapters 4 and 5. Second, I suggest beginning with plausible, well-supported
movement mechanisms, such as individual perception and integration of local
cues when making movement decisions (Nathan et al. 2008). Having selected
salient mechanisms, a plausible ecological context is also key — a population
foraging on a landscape is a solid starting point. The main feature of these models,
however, is to let the ecological outcomes for individuals in one generation (such
as intake) determine the mixture of movement decision-making mechanisms in
the next generation, through inheritance (with variation arising via mutations;
see below, or Chapters 4, 5). For simplicity, as seen in the example models here,
and in Chapters 4 and 5, some ecological and evolutionary aspects will have to be
set aside. In addition to an initial understanding of how mechanisms can lead to
unexpected emergent outcomes, the class of models I advocate are well suited to
examining how these emergent outcomes could change following perturbations
in environmental regimes, as I do in Chapter 5 (see also Botero et al. 2015).

Estimating the Fitness Consequences of Movement
Strategies from Tracking Data

A key barrier to achieving a unified evolutionary ecology of animal movement
is understanding the evolutionary consequences of animal movement strategies;
in short, this requires estimating the ‘fitness’ outcomes of movement (fitness
itself being a challenging term). These consequences may be broken down into
two key components, survival, and fecundity; together these determine lifetime
fitness. Ecologists, taking a phenomenological approach, have been able to make
some headway in examining the evolutionary consequences of some movements,
such as annual migrations. For example Sergio et al. (2022) recently showed
that compensation for drift in the north-south migration route, caused by lateral
east-west winds, improved with age in black kites (Milvus migrans), but that this
was mainly due to poorly navigating individuals dying while young. While this
study highlights the importance of movement for evolutionary dynamics — in
this case, conferring a survival benefit to better navigators — the inferences are
often specific to particular taxa, and difficult to generalise. However, we currently



REFLECTIONS

possess some methods that could be used to link the consequences of movement
across temporal scales.

At relatively short temporal scales of a few tracking seasons, one approach is
to study movement in the context of a common ‘currency’, energy. Combined
experimental-observational approaches, linking respirometry measures of resting
metabolic rate, doubly-labelled water measures for daily metabolic output, and
tri-axial accelerometry and movement tracking, have paved the way for robust
estimates of daily energy expenditure in free living animals (Stothart et al. 2016).
Animals’ spatial settings can impose or alleviate metabolic costs, leading to the
broader approach of studying ‘energy landscapes’, i.e., environmental factors that
change the “cost of transport” (Shepard et al. 2013). Building off this work, we can
now estimate how the cost of navigating through landscapes can affect large-scale
patterns of animal space-use (e.g. Gallagher et al. 2017). Yet more recent work is
probing how animals’ fine-scale movement decisions can be linked directly to
the energetic costs of those decisions (Klappstein et al. 2022). Overall then, the
frameworks for measuring energetic loss in moving animals are well developed,
and this can be linked to reductions in both individual survival and fecundity.

The positive effects of movement are more challenging to measure. Energetic
gain, for instance, requires the detection of foraging bouts. Here too, the addition
of accelerometry data can be useful in detecting sudden bursts of activity, espe-
cially those associated with predation attempts (Williams et al. 2014; Bryce et al.
2017). However, it is still challenging to remotely and automatically determine
the energetic gain from a predation event. The task of measuring the calorific
value of forage is easier for herbivorous species, as vegetation cover and quality
can often be quantified from remote sensing platforms (Pettorelli et al. 2011).
The caveat here is that the spatial resolution of remotely sensed data is often low.
Movement itself cannot confer increased fecundity, but can indirectly facilitate
more or higher quality breeding attempts through increased sampling of breed-
ing opportunities (as in Kempenaers and Valcu 2017). Yet movement data can
be very useful in determining whether individuals have bred successfully, and
uncover the characteristics of good nesting sites (Picardi et al. 2020). Integrating
the analysis of tri-axial acceleration data, could help refine current methods for
detecting breeding or nesting outcomes, at least in some taxa (Schreven et al.
2021). At larger temporal scales, individuals’ preferences for energy landscapes
could be linked to their survival or reproductive success, for global comparisons
of the potential evolutionary consequences of movement strategies.
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Approaches to Investigating Model Predictions

My class of conceptual models aim to provide broad frameworks for the inter-
pretation of current and future patterns observed in animal tracking data. This
is especially important as animal movement ecology becomes a ‘big data’ field
through the use of high-throughput tracking (Nathan et al. 2022). As the resolu-
tion of tracking data improves, animals’ fine-scale decision-making rules could
be revealed, and our framework could help understand the evolutionary causes
of these rules — as well as how these rules could shift with environmental change.
In this regard, space-time substitutions could help: by studying movement strate-
gies in distinct population of the same or similar species along a moving gradient
of environmental conditions, researchers could understand the eco-evolutionary
impacts of global changes such as warmer temperature bands moving polewards,
or shifts in pathogen prevalence (Blois et al. 2013; Carlson et al. 2022a). These
could constitute simple initial tests of model predictions for the example sce-
narios I outline earlier. Such studies would require international collaborative
frameworks studying comparable animal populations; fortunately, multiple such
networks exist and are growing (Iverson et al. 2019; Davidson et al. 2020; Jetz
etal. 2022).
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EWEGING is een fundamenteel proces in de natuur en het ontrafelen van
de oorzaken en consequenties van bewegingspatronen is een belangrijke
doelstelling van de dierecologie. De posities van individuele dieren in een land-
schap bepalen wat ze kunnen waarnemen en met welke andere dieren ze inter-
acties kunnen aangaan. De uitkomsten van deze waarnemingen en interacties
hebben invloed op beslissingen over waar ze vervolgens heengaan. Dergelijke
individuele beslissingen vormen de basis voor grootschalige ecologische verschi-
jnselen, zoals de verspreiding en de ecologische interacties van een soort. In de
afgelopen twintig jaar heeft het vakgebied bewegingsecologie, dankzij snelle on-
twikkelingen op het gebied van trackingtechnologie, fascinerende en nooit eerder
waargenomen relaties tussen de bewegingspatronen van dieren en ecologische
processen aangetoond.

Nog steeds is de bewegingsecologie een van de meest dynamische gebieden
in de biologie. Dit proefschrift is een episodisch, persoonlijk verslag van twee
ontwikkelingen, waarbij ik betrokken ben geweest: (i) de ontwikkeling van statis-
tische methoden om uit de enorme tracking datasets ecologisch betekenisvolle
inzichten te verkrijgen over de oorzaken en consequenties van bewegingspatro-
nen; en (ii) de ontwikkeling van simulatiemodellen om de evolutie van beweg-
ingsstrategieén beter te begrijpen. Beide ontwikkelingen zijn mogelijk gemaakt
door methodologische innovaties die in dit proefschrift nader worden beschreven
ennader worden uitgewerkt. Mijn proefschrift bevat twee delen, die die overeenkomen
met de twee bovengenoemde thema’s.

Hoofdstuk 1 biedt een uitgebreide introductie op de twee thema’s. Ik leg uit hoe
mechanistische, individu-gebaseerde simulatiemodellen kunnen bijdragen aan
een beter begrip vande ecologie en evolutie van de dierlijke bewegings- en verdel-
ingspatronen.. Onder meer leg ik uit dat vaak voorkomende bewegingspatronen,
zoals de verplaatsingen van dieren tijdens het foerageren, even goed (of zelfs
beter) geschikt zijn om de ecologische en evolutionaire oorzaken van dierlijke
beweging te begrijpen als grootschalige maar sporadische gebeurtenissen, zoals
geboorteverspreiding of jaarlijkse migratie.

In Deel 1 beschouw ik het probleem hoe de verplaatsingsstrategieén met be-
hulp van de big data van trackingsystemen ontrafeld kunnen worden. Ik was als
coauteur betrokken bij een recent overzichtsartikel in Science (niet opgenomen
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in mijn proefschrift; zie de lijst met publicaties) dat een handige inleiding tot de
problematiek geeft.

Hoofdstuk 2 beschrijft een aantal praktische aspecten van het werken met
de enorme ruimtelijke datasets die worden gegenereerd door high-throughput
trackingsystemen, die de verplaatsingen van honderden dieren met een zeer hoge
spatio-temporele resolutie kunnen tracken (met een nauwkeurigheid van een paar
meter en met een interval van een paar seconden). Ik behandel het opschonen,
aggregeren, segmenteren en clusteren van data, en bespreekmanieren om deze
methoden op een reproduceerbare en efficiénte manier te implementeren. Hierbij
maak ik gebruik van recentelijk ontwikkelde methoden uit andere vakgebieden
(softwareontwikkeling en andere big data vakgebieden zoals genomics). Het
ontwikkelen van robuuste en reproduceerbare methoden voor dataverwerking is
volgens mij een hoeksteen van de bewegingsecologie van de toekomst.

In Intermezzo A illustreer ik aan de hand van een voorbeeld zowel de tech-
nische als de esthetische aspecten van het visualiseren van bewegingsdata. Dit
resulteerde in een kaart die in 2021 de Mapping Animal Movements-competitie
van de British Ecological Society heeft gewonnen.

In Hoofdstuk 3 laat ik zien hoe een combinatie van fijnmazige bewegingsdata
en de analyse van ‘gezichtsvelden’ (wat een individueel dier daadwerkelijk kan
zien vanuit zijn locatie) nieuwe inzichten geeft in de verplaatsingsstrategieén en
habitatselectie van ruiende (en dus kwetsbare) vogels. De analyse laat zien dat de
beslissingen van ruiende vogels voornamelijk worden bepaald door de toestand
van hun verenkleed (dat bepaald hoe makkelijk zij kunnen vluchten) en de vraag
of en in hoeverre potentiéle bestemmingen zichtbaar zijn voor predatoren.

In Deel I beschrijf ik hoe we met behulp van individu-gebaseerde modellen
inzichten kunnen verkrijgen in de evolutie van bewegingsstrategieén en de ecolo-
gische consequenties van deze strategieén. In Intermezzo B illustreer ik aan de
hand van een eenvoudig voorbeeld hoe dit soort conceptuele modellen kunnen
worden geimplementeerd. Ook laat ik zien dat de evolutionaire en ecologische
voorspellingen van dit soort modellen substantieel kunnen verschillen (kwanti-
tatief en kwalitatief) van de uitkomsten van wiskundige modellen.

In Hoofdstuk 4 bestudeer ik een model voor de evolutie van bewegingsstrate-
gieén in het verband van voedselcompetitie. Dit is het eerste, volledig uitgew-
erkte onderzoek dat gebruikmaakt van het type modellen dat ik in de Inleiding
bepleit. In dit model zijn de verplaatsings- en foerageerbeslissingen van indi-
viduele dieren afhankelijk van lokale omgevingssignalen (zoals de dichtheid van
voedsel en de aanwezigheid van soortgenoten) en leidt evolutie tot een steeds
betere aanpassing van deze beslissingen aan de competitieve context. De simu-
laties laten zien dat verschillende competitiestrategieén geassocieerd raken met
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verschillende bewegingsstrategieén. Dit leidt tot een verdeling van de concur-
rerende individuen over de ruimte die sterk afwijkt van de voorspellingen van
klassieke modellen. Voor elke competitievorm volgen de bewegingsstrategieén
een bepaald patroon, maar binnen dit patroon bestaat een grote diversiteit aan
bewegingsstrategieén. Dit heeft belangrijke consequenties, want vanwege deze di-
versiteit kunnen bewegingsstrategieén zeer snel evolueren als omgevingsfactoren
(zoals de voedselverdeling) veranderen.

Intermezzo C is een (gepubliceerd) commentaar op een individu-gebaseerde
simulatiestudie die niet voldoende rekening houdt met de door mij voorgestelde
principes voor het modelleren van beweging en competitie. We laten zien dat
kleine onnauwkeurigheden en fouten bij de implementatie van een simulatiemodel
grote consequenties voor het systeemgedrag kunnen hebben.

Hoofdstuk 5 behandelt de evolutie van verplaatsingsstrategieén na de intro-
ductie van een besmettelijk pathogeen. Via evolutie moet een nieuwe balans
worden gevonden tussen de voordelen van sociale contacten (het verkrijgen van
informatie over potentiéle voedselbronnen) en de nieuw ontstane risico’s van
dit soort contacten (de overdracht van het pathogeen). Ik laat zien dat de evolu-
tie verrassend snel verloopt en grote consequenties heeft voor de structuur van
sociale netwerken en de foerageerefficiéntie. Een mechanistische modellering
van de introductie en verspreiding van een nieuw, besmettelijk pathogeen, een
scenario dat wereldwijd tot steeds grotere zorgen leidt, kan dus helpen om de
directe en indirecte gevolgen op individueel niveau te voorspellen, evenals de
gevolgen voor de ruimtelijk-sociale organisatie van dierengemeenschappen.

Hoofdstuk 6 combineert de methoden van deel I en deel I van mijn proefschrift.
Met behulp van de individuele bewegingspatronen in de simulaties in hoofdstuk 4
valideer ik twee populaire statistische methoden in de bewegingsecologie: her-
haalbaarheidsanalyse en de analyse van stapselectiefuncties. Ik laat zien dat
de in hoofdstuk 4 gevonden aanzienlijke individuele verschillen in verplaats-
ingsstrategieén door deze methoden vaak niet gedetecteerd worden. Deze studie
laat zien dat simulatiegegevens zeer nuttig kunnen zijn om de mogelijkheden en
beperkingen van statistische tools in kaart te brengen.

In Hoofdstuk 7 kijk ik ten slotte terug op de bevindingen van dit proefschrift en
stel ik voor hoe een energetica-aanpak zou kunnen worden gebruikt om sommige
van de fitnessgevolgen van verplaatsingen van dieren in te schatten.
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