
λ – Vold

Box 2. The neural network approach

Associative learning is the process whereby an organism comes to associate one
stimulus or event with other stimuli or events.

The Rescorla-Wagner Rule is arguably the most prominent model for explaining
how the strength of these associations develop during learning.

Here we use evolving neural networks to address the question how natural
selection shapes associative learning and whether it will lead to learning patterns
that are similar to the Rescorla-Wagner Rule.
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Figure 2. Comparison of the updating mediated by the evolved networks and the
Rescorla Wagner Rule. When the difference in estimates Vnew-Vold is plotted against the
difference λ-Vold between reward and old estimate, the Rescorla-Wagner Rule (gold)
produces a straight line with slope β. By plotting the same characteristics in one graph,
the updating behaviour of different rules and networks can be compared.

Networks used in our simulations

Artificial Neural Network Models for the Evolution of Associative Learning

Trimmer et al. (2012, JTB. 302:39) approached the same question using genetic
algorithms and binary trees where learning rules of arbitrary complexity could
evolve. We follow their framework but use the more realistic assumption that
learning is mediated by a neural network. Their model can be conceptualized as
bumblebees that sequentially sample flowers which can either have a nectar reward
or not. Each time they experience reward (or not) they update their estimate V of
the probability that any given flower provides reward.

In our model, the updating of the probability estimate V in response to reward λ is

not mediated by a learning rule, but by an artificial neural network (see Box 2).

The network has two input nodes (for the reward λ and the previous estimate of V,
Vold) and one output node (whose value corresponds to the new estimate of V, Vnew).
Information processing happens in-between and is governed by connections
between nodes. Connections’ weights are genetically encoded and transmitted from
parent to offspring (subject to small mutations). Individuals producing a good
estimate of the true probability of getting nectar have high fitness and thus produce
more offspring. In this way the population of networks evolves over the generations.
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Introduction

Background and Model

In the context of Trimmer’s model, Rescorla-Wagner updating is given by:

Rescorla-Wagner Rule: Vnew = Vold + β(λ –Vold) 

where λ is the reward (1 or 0) and β is the learning rate. The optimal
value of β strongly reflects the number of learning events.

Trimmer et al. (2012) showed that the Rescorla-Wagner Rule readily
evolves, even though there is a learning rule with better performance:

Optimal Rule: Vnew = Vold + β(λ – 0.5)

Box 1. The ‘learning rule’ approach

Networks used in our simulations

Results

N1 N2

N3 N4

Main Findings and Conclusions

Network N1 evolves to behave and
perform exactly as the Rescorla-
Wagner Rule (Fig. 1 and Fig. 2).

Network N2 (N1 + constant bias)
evolves to behave and perform as the
Optimal Rule (Fig. 1 and Fig. 2 at T3).

More complex networks (N3, N4)
evolve more slowly than their simple
counterparts (Fig. 1).

But these more complex networks do
not perform better (Fig. 1), and they
show the same updating behaviour as
the simpler networks (Fig. 2 at times T2
and T3).

In line with Trimmer et al.’s results,
networks that evolve to reach optimal
performance, transiently behave and
perform as the Rescorla-Wagner Rule.
(In Fig. 2 N2 and N4 at times T1 and T2,
respectively).

In a more demanding associative
learning task, only some (even more
complex) networks outperform the
Rescorla-Wagner Rule (networks and
results not shown).
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Figure 1. For the networks used, over the generations, the mean estimation error
(difference between the true and the estimated value of V) decreases and converges to an
asymptotic value.
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