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Behavioral ecologists have long been comfortable assuming that genetic architecture does not constrain which phenotypes  
can evolve (the “phenotypic gambit”). For flexible behavioral traits, however, solutions to adaptive problems are reached not only 
by genetic evolution but also by behavioral changes within an individual’s lifetime, via psychological mechanisms such as learn-
ing. Standard optimality approaches ignore these mechanisms, implicitly assuming that they do not constrain the expression of 
adaptive behavior. This assumption, which we dub the behavioral gambit, is sometimes wrong: evolved psychological mechanisms 
can prevent animals from behaving optimally in specific situations. To understand the functional basis of behavior, we would 
do better by considering the underlying mechanisms, rather than the behavioral outcomes they produce, as the target of selec-
tion. This change of focus yields new, testable predictions about evolutionary equilibria, the development of behavior, and the 
properties of cognitive systems. Studies on the evolution of learning rules hint at the potential insights to be gained, but such 
mechanism-based approaches are underexploited. We highlight three future research priorities: (1) systematic theoretical analy-
sis of the evolutionary properties of learning rules; (2) detailed empirical study of how animals learn in nonforaging contexts;  
and (3) analysis of individual differences in learning rules and their associated fitness consequences. Key words:  behavioral  
flexibility, behaviorally stable strategy, behavioral plasticity, game theory, learning rules, optimality. [Behav Ecol]

Introduction

Perhaps the greatest success of behavioral ecology has been 
its ability to make detailed predictions of animal behav-

ior from an economic consideration of the costs and bene-
fits associated with alternative actions (Parker and Maynard 
Smith 1990; Krebs and Davies 1997). Underpinning this 
approach is the so-called phenotypic gambit—the assump-
tion that genetic architecture does not constrain which 
phenotypes can evolve (Grafen 1984). There is continuing 
debate about the validity of this gambit (Hadfield et al. 2007;  
Bull and Wang 2010), but by and large, it is regarded as a 
useful approximation (Cheverud 1988; Roff 1995; Réale and 
Festa-Bianchet 2000). Although genetics may make a dif-
ference in short-term evolution, they can perhaps be safely 
neglected in the long term (Weissing 1996).

Showcasing the power of the phenotypic gambit are the 
polymorphisms of marine isopods (Paracerceis sculpta; Shuster 
and Wade 1991), scale-eating cichlids (Perissodus microlepis;  
Hori 1993), and side-blotched lizards (Uta stansburiana; 
Sinervo and Lively 1996), in which the frequencies of alterna-
tive behavioral strategies can be predicted from phenotypic 
measurements of frequency-dependent selection. In all these 
systems, the behavioral strategies are more or less fixed from 

birth and are accompanied by marked physiological and  
morphological differentiation. Behavioral changes occur from  
one generation to the next through selection and inheritance 
of alternative strategies, resulting in genetic evolution.

Most behaviors of interest, however, are not fixed but mal-
leable. In these cases, adaptation occurs not only through 
genetic evolution but also through changes that take place 
within an individual’s lifetime, via psychological mechanisms 
such as learning. Despite this important distinction, functional 
analyses of behavior typically treat flexible and fixed behav-
iors in the same way. The methods used to analyze moment-
to-moment behavioral decisions, such as where to forage, 
whom to interact with, or whether to explore or exploit the 
environment, are the same as those used to analyze life-his-
tory decisions over clutch size, sex allocation, and the timing 
of maturity. This approach invokes an additional, unstated 
assumption: that the psychological mechanisms underlying 
flexible decision making do not constrain the expression of 
adaptive behavior and allow animals to reach the optimal 
solution to a given problem. We refer to this extra assumption 
as the behavioral gambit (Giraldeau and Dubois 2008; see 
also Puts 2010). Put simply, “sophisticated behavioral adapta-
tions of animals are thought to reflect the calculation power 
of the evolutionary process, rather than cognitive skills of the 
individual brain” (Hammerstein 1998, p. 5). Here, we argue 
that the way that evolution has shaped cognitive systems may 
in fact have a crucial impact on behavior.

By focusing on expressed behavior and neglecting the 
underlying mechanism, behavioral ecologists unwittingly adopt  
the behavioral gambit, extending the phenotypic gambit 
beyond its accepted remit. For example, when predicting the 
amount of food that a central-place forager should collect 
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before returning to its nest, researchers typically omit the 
details of how the animal perceives its environment, how 
it values food items, how it remembers its past foraging 
experiences, and how it devalues the future, assuming that all 
of these have evolved to provide the animal with the optimal 
behavioral solution. Mechanisms have not been ignored, 
but by and large, they are studied in parallel and almost 
never integrated with a functional perspective on animal 
behavior (cf. Brunner et  al. 1996; Stephens 2002). This can 
be a useful simplification, but, as we argue in this article, it 
has its limitations. We believe it is critical that researchers 
recognize when they rely on the behavioral gambit for two 
key reasons. First, the behavioral gambit sometimes fails: 
evolved psychological mechanisms can prevent animals 
from behaving optimally in specific situations (see e.g. 
Herrnstein 1990; Bateson and Healy 2005; Henly et al. 2008). 
To understand why the gambit could be wrong, we need to 
consider the adaptive value (i.e. fitness-affecting properties) of 
the underlying mechanisms, not the behaviors they produce 
(Stevens 2008). As we will see, predictions of behavior based 
on evolved mechanisms do not always coincide with standard 
predictions, revealing the shortcomings of the gambit. 
Second, by questioning the behavioral gambit and shifting 
our focus to psychological mechanisms as the phenotype 
under selection, we can obtain new insights about adaptive 
behavior. We ask what kinds of psychological mechanisms 
selection should favor, focusing particularly on the evolution 
of learning rules and providing a critical appraisal of previous 
research on this topic. Finally, we offer recommendations for 
future research on flexible behavior.

IS THE BEHAVIORAL GAMBIT JUSTIFIED?

Recognizing our reliance on the behavioral gambit is crucial 
because sometimes it is wrong. Experimental psychologists 
have analyzed in detail how laboratory animals make deci-
sions when faced with alternative options, and quite often 
the observed behavior does not fit predictions from a stan-
dard optimality approach. Below we describe three illustrative 
examples of such apparently maladaptive behavior.

Animals are impulsive

Consider an animal given a choice between a smaller amount 
of food immediately and a much larger amount of food 
after a brief time delay, the so-called self-control paradigm 
(Stephens et al. 2004). When the larger, later option gives a 
higher overall rate of intake, optimal foraging theory predicts 
that the animal should prefer this option. In reality, however, 
animals are commonly found to be impulsive; that is, they 
prefer the immediate reward (reviewed in Henly et al. 2008). 
One popular explanation for this puzzling behavior is that 
delayed rewards are devalued by the risk that foraging will 
be interrupted, thereby preventing the animal from collect-
ing the reward (Kagel et  al. 1986), but studies of temporal 
discounting do not support this interpretation (Mazur 2000; 
Henly et al. 2008).

Animals do not maximize their rewards

When the reward rates associated with different behaviors are 
unequal, animals tend to adjust their use of those behaviors 
accordingly; behaviors that are rewarded at a high rate are 
performed more frequently than those that are less profit-
able (a phenomenon known as melioration; Herrnstein and 
Vaughan 1980). The resulting stable pattern of allocation is 
well described by Herrnstein’s (1961) “matching law,” which 

states that the proportion of times that an option is chosen 
is equal to the proportion of reinforcements that the option 
delivers. Since Herrnstein’s classic study, the generality of his 
law has been confirmed by experiments on a range of species 
(Davison and McCarthy 1988; Staddon and Cerutti 2003). 
Strikingly, animals appear to show matching even when alter-
native patterns of behavior would yield a higher rate of gain 
(Herrnstein and Heyman 1979; Houston and McNamara 
1981; Heyman and Herrnstein 1986; Herrnstein 1990). This 
is puzzling from an optimality perspective, under which (all 
else being equal) we expect animals to maximize their rate 
of gain.

Animals do not value alternative options in a rational way

Rationality is the cornerstone of economic models (Kacelnik 
2006; Houston et  al. 2007), yet animals often do not value 
alternative options in a rational way. Sometimes valuation is 
state dependent: it is affected by the condition the animal 
was in when it was previously rewarded for that behavior. For 
example, European starlings (Sturnus vulgaris; Marsh et  al. 
2004), desert locusts (Schistocerca gregaria; Pompilio et  al. 
2006), and banded tetras (Astyanax fasciatus; Aw et al. 2009) 
prefer an option which previously gave them food when they 
were hungry over one that gave them the same amount of 
food when they were satiated, whereas laboratory rats (Rattus 
norvegicus) prefer a flavor more strongly if they originally 
tasted it under low rather than high hunger (Capaldi et  al. 
1983). The choices animals make are also influenced by 
irrelevant or “decoy” options (Bateson and Healy 2005). For 
example, in honeybees (Apis mellifera; Shafir et al. 2002), grey 
jays (Perisoreus canadensis; Shafir et  al. 2002), European star-
lings (Bateson 2002), and rufous hummingbirds (Selasphorus 
rufus; Bateson et al. 2003), the preference for one of two for-
aging options increases when a third, relatively unattractive 
option is added to the choice set. This violates principles of 
rational choice and implies that valuation is not absolute, but 
comparative (though see Schuck-Paim et  al. 2004 for a dif-
ferent interpretation). From a standard optimality perspec-
tive on behavior, such state- and context-dependent valuation 
appears not to be adaptive. Thus, in contradiction to the 
behavioral gambit, the underlying psychological mechanisms 
have not evolved to support optimal outcomes.

EVOLVED MECHANISMS AS ADAPTATION AND 
CONSTRAINT

Why is behavior not adaptive in these cases? We propose that 
this is because the behavior patterns expressed in specific 
situations are not themselves directly under selection but are 
the product of evolved psychological mechanisms underlying 
behavioral flexibility across a wide range of situations (Stevens 
2008). Natural environments are so complex, dynamic, and 
unpredictable that natural selection cannot possibly furnish 
an animal with an appropriate, specific behavior pattern for 
every conceivable situation it might encounter (McNamara 
and Houston 2009). Instead, we should expect animals to 
have evolved a set of psychological mechanisms which enable 
them to perform well on average across a range of differ-
ent circumstances (Gigerenzer et  al. 1999; Hutchinson and 
Gigerenzer 2005). These mechanisms encompass fixed rules 
for responding to current stimuli, subject to sensory biases, 
and learning rules for how to adjust behavior in response to 
past experiences.

The evolved psychological mechanisms of a given 
species will be tuned to its ecology, reflecting the particular 
kinds of situations the animal is likely to confront in its 
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natural environment. Many situations will never have been 
encountered before, but the animal may rely on the same 
mechanisms for tackling problems with a similar statistical 
structure (Todd and Gigerenzer 2007; Wilke and Barrett 
2009). In certain specific situations—including the contrived 
laboratory situations common in experimental psychology—
the behavior displayed may not maximize rate of energetic 
gain, or whichever other currency is assumed to influence 
fitness. To understand why that behavior has evolved, we 
have to consider the adaptive value of the psychological 
mechanism which controls it (Stevens 2008; McNamara and 
Houston 2009), in the kinds of environments the animal 
would normally encounter (McNamara and Houston 1980; 
Houston and McNamara 1989; Houston et al. 2007; Todd and 
Gigerenzer 2007; Houston 2009).

Most behavioral ecologists do not directly address psycho-
logical mechanisms when considering the adaptive value of 
behavior, but work led by Alex Kacelnik (e.g. Kacelnik and 
Todd 1992; Todd and Kacelnik 1993; Brunner et  al. 1996; 
Shapiro et  al. 2008) and Dave Stephens (e.g. Stephens and 
Anderson 2001; Stephens 2002; Stephens et  al. 2004) pro-
vides a prominent exception. For example, Brunner et  al. 
(1996) incorporated memory constraints into an optimal-
ity model of patch-leaving decisions in starlings, inspired by 
empirical research on how animals estimate time intervals 
(Gibbon 1977). This model predicted the empirical data bet-
ter than one in which the animals were assumed to have com-
plete memory of all the time intervals between the food items 
found in a patch (Brunner et  al. 1996). In a similar vein, a 
model by Stephens (2002) assumed that a given absolute dif-
ference between two stimuli is easier to discern when those 
stimuli are of low intensity, a well-known empirical result 
known as Weber’s law (Gibbon 1977). He used this to show 
that impulsive decisions could, under certain conditions, be 
adaptive (Stephens 2002).

This kind of approach highlights the potential benefits of 
incorporating psychological mechanisms into standard opti-
mality models, but it is rarely adopted. Furthermore, the 
emphasis in these examples is firmly on psychological mecha-
nisms as a constraint on optimization. A particular mechanis-
tic constraint is assumed on the basis of empirical findings, 
and then the aim is to find the optimal strategy operating 
within those constraints. Here, we contend that the mecha-
nisms underlying behavioral flexibility should be viewed not 
only as a constraint but also as a possible adaptation. It was 
clear from the preceding section that psychological mecha-
nisms may sometimes constrain an animal’s behavior in such 
a way that it performs suboptimally within particular situa-
tions. But a mechanism that consistently produces suboptimal 

behavior in common situations will be selected against, partic-
ularly if the deviations from optimal behavior are very costly 
(Houston 1987). We therefore expect that the set of psycho-
logical mechanisms an animal possesses will, overall, be well 
adapted to its natural environment, generating behavior 
which is close to optimal in the kinds of situations the animal 
is most likely to face.

CHECKING OUR PREDICTIONS OF BEHAVIOR

In adopting the behavioral gambit, mechanistic constraints 
are put aside and are assumed not to affect the behavioral 
outcome. This is a convenient assumption because behavior 
is observable, whereas the underlying psychology is hidden, 
but as we have seen above it does not always work. There is 
an interesting parallel here with the economists’ metaphor 
of Homo economicus, the idealized being who makes perfectly 
rational decisions, free from the complications of emotions 
or feelings (Persky 1995). As a predictive model of human 
decision making, this has been criticized, partly because  
emotions are known to play a pivotal role in many of the deci-
sions made by real people (Loewenstein 2000) and may some-
times cause them to behave irrationally (Henrich et al. 2001; 
Shiv et al. 2005). For example, Shiv et al. (2005) found that 
patients with damage to the brain regions involved in the pro-
cessing of emotions performed better on a monetary invest-
ment task than both normal participants and patients with 
damage to other brain regions. This suggests that emotions 
can sometimes “interfere” with rational decision making. In 
line with what we have argued above, a way to understand 
such instances of irrational behavior would be to consider 
whether the underlying psychological mechanisms are adap-
tive in a broader context.

Has our unquestioning acceptance of the behavioral gam-
bit led us to incorrect predictions about animal behavior? 
To find this out, we need to revisit standard predictions and 
check whether evolved psychological mechanisms would 
lead to the same solution. This requires that we focus on the 
mechanisms, rather than the behavioral outcomes they pro-
duce, as the target of selection. This perspective turns out to 
be highly instructive and can lead to new insights about adap-
tive behavior.

Reassessing evolutionary equilibria

In game-theoretical situations, where pay-offs are influenced by 
the actions of others, natural selection is expected to lead to 
an equilibrium state at which no alternative types can spread 

Table 1
Definitions of some key equilibrium concepts in behavioral ecology

Term Definition Reference

Stable equilibrium frequency (SEF) Within a population, a phenotype or stable mixture of phenotypes  
for which no individual would increase its fitness by changing to a 
different phenotype. No distinction is made between whether the 
phenotypes are fixed (stable from birth) or flexible (adjustable within 
an individual’s lifetime).

Mottley and Giraldeau (2000)

Evolutionarily stable strategy (ESS) An SEF for which individual phenotypes are assumed (implicitly or 
explicitly) to be genetically fixed and held in equilibrium by  
frequency-dependent selection.

Maynard Smith (1982)

Behaviorally stable strategy (BSS) An SEF for which individual phenotypes are flexible and can change 
during an individual’s lifetime. The equilibrium may be reached  
via learning from frequency-dependent pay-offs.

Giraldeau and Dubois (2008)

Evolutionarily stable (ES)  
learning rule

A rule for adjusting behavior in response to past experiences which, 
when adopted by all individuals in a population, cannot  
be outcompeted by any alternative rule.

Harley (1981)

Behavioral Ecology4

Downloaded from https://academic.oup.com/beheco/article-abstract/24/1/2/2261355
by University Library user
on 23 April 2018



within the population, referred to as an evolutionarily stable 
strategy (ESS; Maynard Smith 1982) or stable equilibrium 
frequency (SEF; Mottley and Giraldeau 2000; see Table 1). To 
predict such equilibria, alternative behavioral types are treated 
as though they are genetically fixed, with their proportions 
changing from one generation to the next through frequency-
dependent selection. This basic methodology has been used 
to analyze behavior in a range of interactive contexts, from 
fighting to mating to cooperating.

However, in most of the behavioral games studied, a change 
in the frequencies of alternative strategies in the population is 
achieved not by selection weeding out less adapted forms but 
by individuals flexibly changing their use of those strategies 
(Stephens and Clements 1998). In such situations, an equilib-
rium is reached when no individual can benefit by unilaterally 
changing its behavior. This Nash equilibrium is analogous to an 
ESS but is more properly termed a behaviorally stable strategy 
(BSS) (Giraldeau and Dubois 2008; Dobler and Kölliker 2009; 
Morand-Ferron and Giraldeau 2010; also developmentally sta-
ble strategy [DSS], Dawkins 1976) because it is reached through 
behavioral, rather than evolutionary, changes. In Table 1, we 
distinguish between the different equilibrium concepts used in 
behavioral ecology. The behavioral gambit implies that an equi-
librium state will be the same regardless of whether it is reached 
over evolutionary time (ESS) or through individuals changing 
their behavior (BSS). But is this supported? To answer this ques-
tion, we must consider the rules for adjusting behavior as the 
phenotype under selection and check whether this affects our 
predictions.

In fact, it turns out that the evolutionary equilibrium  
for behavioral rules is not necessarily the same as that for 
fixed actions. Such a discrepancy has been highlighted in the 
context of parental provisioning of offspring, both for the 
conflict between two parents (McNamara et  al. 1999; Taylor 
and Day 2004; Johnstone and Hinde 2006) and that between 
parent and offspring (Kölliker 2003; Smiseth et  al. 2008; 
Dobler and Kölliker 2009). The standard approach to ana-
lyze these conflicts is to identify the best fixed action for one 
party given the fixed action of the other party, which exam-
ines conflict resolution solely on an evolutionary timescale 
and ignores the fact that both parties will normally be able to 
respond to each other’s behavior in a flexible manner during 
the course of their interaction. More recent approaches have 
incorporated this behavioral flexibility by considering rules 
for responding instead of fixed actions, and they find that the 
stable level of provisioning differs from standard predictions 
(McNamara et al. 1999; Kölliker 2003; Taylor and Day 2004; 
Johnstone and Hinde 2006; Smiseth et al. 2008; Dobler and 
Kölliker 2009). Thus, in order to predict adaptive behavior, 
it is necessary first to focus on the behavioral rule rather than 
the actions it produces.

Whether similar discrepancies exist in other contexts 
remains to be investigated, but we see no reason why this should  
be something specific to parental care (McNamara et  al. 
1999; Dobler and Kölliker 2009). In cases where behavior is 
flexible and can be adjusted in response to the behavior of 
others, we should not just assume that the BSS and the ESS 
will coincide. This is an open question that we can answer 
with the appropriate type of analysis.

Development of behavior

By focusing on selective optima and evolutionary trajectories 
toward those optima, behavioral ecologists tend to neglect 
how behavior develops during the lifetime of an individ-
ual (but see Caro and Bateson 1986; Bateson 1988, 2001; 
Stamps 2003). Development and function—the domains 
of two of Tinbergen’s (1963) four “why” questions about 

behavior—have traditionally been studied separately, but we  
believe that much could be gained by integrating these levels  
of analysis (see also Laland et al. 2011). By considering the 
evolved psychological mechanisms underlying behavior, we can  
begin to understand the behavioral changes that take place 
as individuals develop from an adaptive viewpoint and predict 
how behavior should change in the light of experience.

A dynamic model of aggression by Fawcett and Johnstone 
(2010) illustrates this approach. Fawcett and Johnstone 
evolved a rule for aggressive behavior dependent on past 
experience of victories and defeats, thereby allowing behav-
ior to change within an individual’s lifetime, as well as on an 
evolutionary timescale. They assumed that individuals are 
uncertain of their own strength, but that they gradually learn 
about this through their aggressive interactions with others. 
The model generated developmental trajectories of aggres-
sion under adaptive behavior at the evolutionary equilibrium, 
predicting that aggression should peak in young, naïve indi-
viduals and decline thereafter as they gain experience. This 
pattern fits well with observed changes in aggressive behav-
ior in humans from birth to adulthood (Tremblay 2010). 
The model’s predictions of age-dependent behavior were a 
result of adaptive rules for learning from past experiences 
and could not have been generated using standard models 
of aggression.

There is great potential for more work in this area. Most 
optimality models (including those that allow for state 
dependence) take a simplified view of adaptive behavior, in 
which individuals immediately show appropriate responses 
to the situations they encounter and follow a predetermined 
strategy throughout their life, with changes occurring only 
through evolution. But these responses are in fact the prod-
uct of underlying rules that play a critical role in develop-
ment, causing behavior to change as an individual interacts 
with its environment. Viewed in this light, juvenile behavior is 
not simply an imperfectly formed version of adaptive behav-
ior in adults; rather, both may result from the same adaptive 
psychological mechanisms. We encourage other researchers 
to study the ontogeny of behavior as a product of evolution 
(Caro and Bateson 1986; Bateson 2001) by considering how 
the mechanisms underlying adaptive behavior orchestrate 
changes during development.

Cognitive ecology

Behavioral phenotypes are a result of cognition—“the neu-
ronal processes concerned with the acquisition, retention, 
and use of information” (Dukas and Ratcliffe 2009). The 
emerging field of cognitive ecology (Dukas 1998; Dukas and 
Ratcliffe 2009; Shettleworth 2010) deals with how cognition 
is shaped by evolution in a species’ natural environment, but  
it is uncommon to incorporate the details of proximate 
mechanisms into optimality analyses of behavior (for notable 
exceptions, see Kacelnik and Todd 1992; Todd and Kacelnik 
1993; Brunner et  al. 1996; Stephens and Anderson 2001; 
Stephens 2002; Shapiro et al. 2008).

Cognitive systems are full of biases. For example, some 
sensory receptors have biased sensitivity to particular stimuli; 
exaggerated representations of natural stimuli can elicit 
supernormal responses; discrimination between positive and 
negative stimuli is often affected by peak shift; some types 
of associations are learnt more readily than others; and 
responses to multiple stimuli may interact in complex ways 
(Enquist and Arak 1998). Rats (Harding et al. 2004), starlings 
(Matheson et al. 2008), and honeybees (Bateson et al. 2011) 
show apparently “optimistic” or “pessimistic” biases in how 
they respond to ambiguous stimuli. Likewise, at the level of 
decision making, animals are often impulsive, irrational, and  
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show response matching instead of maximizing their rewards 
(see above). From a functional viewpoint, these kinds of 
biases make little sense if we consider isolated behaviors; 
but if we consider the adaptive value of the psychological 
mechanisms responsible for those behaviors, then we might 
begin to understand why they have evolved (Haselton et  al. 
2009; McNamara and Houston 2009).

Hamblin and Giraldeau (2009) modeled foraging behav-
ior in a producer–scrounger game (Barnard and Sibly 
1981). Rather than following the standard approach of 
tracking frequency-dependent selection on producing and 
scrounging behavior (Giraldeau and Caraco 2000), they 
compared different learning mechanisms proposed to influ-
ence the use of these tactics and allowed the parameter  
values of each mechanism to evolve. The evolved values 
for the most successful mechanism showed an unexpected 
bias: the residual tendency for individuals to use the pro-
ducer tactic when this went unrewarded was much higher 
than that for the scrounger tactic, which was close to zero 
(Hamblin and Giraldeau 2009). In practice, this implies 
that producing behavior should be difficult to extinguish, 
whereas the use of scrounging should be much more 
responsive to the level of reinforcement. The novel predic-
tion of a learning bias is beyond the scope of standard fixed-
action approaches to analyzing the producer–scrounger 
game; it is a direct consequence of modeling the learning 
mechanisms underlying behavior.

Similar insights have come from other studies which have 
considered the adaptive value of learning mechanisms. 
Groβ et  al. (2008) studied foraging behavior in a chang-
ing environment, and similar to Hamblin and Giraldeau 
(2009), they found that performance was critically affected 
by the tendency to keep sampling the pay-off from actions 
which are not currently favored. Over an extended time 
period, behavioral rules which stop sampling alterna-
tive actions perform poorly. Learning biases can also be 
predicted for contexts outside foraging. In Fawcett and 
Johnstone’s (2010) model of aggression, learning about 
one’s own strength drives winner and loser effects, in which 
aggressive tendencies are modulated by past experiences 
of victory and defeat. Winner and loser effects have been 
widely documented in the empirical literature (Hsu et  al. 
2006), but the model’s novel prediction that these effects 
should change with age remains to be tested.

Developing a coherent body of theory to explain cog-
nitive biases is an ambitious goal, and one that is a long  
way off yet. But we believe that our best hope of under-
standing such biases lies in studying the adaptive value of 
psychological mechanisms, not the individual behaviors 
those mechanisms produce.

WHAT KINDS OF MECHANISMS SHOULD WE EXPECT?

As argued above, we should expect animals to have 
evolved psychological mechanisms which work well across 
a range of contexts (Gigerenzer et  al. 1999; Hutchinson 
and Gigerenzer 2005; McNamara and Houston 2009) that  
share similar statistical properties (Todd and Gigerenzer 
2007; Wilke and Barrett 2009). Behavior in any given situ-
ation may not be exactly optimal, but overall the animal 
should perform in an efficient way. This view is related 
to Simon’s (1956) concepts of “satisficing” and “bounded 
rationality”, long popular among social scientists studying 
decision making in humans (Rubinstein 1998; Gigerenzer 
and Selten 2002; Kahneman 2003). However, in contrast 
to what we are advocating here, the bounded rationality 
perspective rarely adopts an evolutionary approach. When 

assessing adaptive function, we need to ask what kinds of 
psychological mechanisms will be favored by natural selec-
tion (Stevens 2008; McNamara and Houston 2009). Some 
will be fixed rules for responding to stimuli (Hutchinson 
and Gigerenzer 2005), but where flexible behavior is con-
cerned, they will often be partly shaped by learning. For 
the remainder of our article, we focus on rules for learning, 
because these have been the subject of most studies in this 
area and the findings have broad implications for behavior 
in a variety of contexts.

In the perspective we are advocating, adaptive behavior 
is determined not by the evolutionary stability of individual 
actions but the evolutionary stability of the underlying rules. 
It was Harley (1981) who first applied this concept to learn-
ing mechanisms when he searched for an evolutionarily  
stable (ES) learning rule (Table 1): a rule that, when adopted 
by all individuals in a population, cannot be outcompeted 
by any alternative rule used by a mutant individual. Harley 
claimed that the ES learning rule would be the one that 
leads most quickly to the ESS for fixed actions, and on this 
basis, he identified the “relative pay-off sum” (RPS) as a rule 
which came close to being evolutionarily stable (Harley 1981; 
Maynard Smith 1984). Under the RPS rule, an individual per-
forms each action in its repertoire with a probability equal to 
the cumulative pay-off received for that action so far, relative 
to the total sum of pay-offs for all actions; it therefore approx-
imates matching (see above) under many conditions (but not 
all; see Houston and Sumida 1987). Harley also included a 
“memory factor” which determines the weighting given to 
past events and a residual probability of continuing to per-
form an action in the absence of reward (see above). His con-
clusions were criticized by Houston (1983) and Houston and 
Sumida (1987), who showed that under some circumstances, 
fitness could be increased by deviating from matching. Tracy 
and Seaman (1995) corrected the mathematical details of 
Harley’s analysis and showed that both the RPS rule and 
the ES learning rule tend to converge to matching, but they 
pointed out that many other rules might do the same (see 
also Selten and Hammerstein 1984). There are two important 
conclusions to draw from this debate. First, because matching 
does not uniquely specify behavior (Houston and McNamara 
1981), it is not possible to infer the rule an animal is using 
simply from the observation of matching. Second, the fact 
that a given rule generates matching does not guarantee its 
evolutionary stability.

After waning somewhat, interest in the evolution of 
learning rules has recently been reignited by computer 
simulation studies (e.g. Beauchamp 2000; Groβ et  al. 
2008; Hamblin and Giraldeau 2009; Buchkremer and 
Reinhold 2010) investigating the performance of the RPS 
rule and alternative learning rules, principally the perfect 
memory (PM) rule and the linear operator (LO) rule (for 
mathematical details of all these rules, see Hamblin and 
Giraldeau 2009). Interestingly, the RPS rule again seems 
to do best (Hamblin and Giraldeau 2009). Although we 
commend these attempts to study the adaptive value of 
learning rules, we believe that current approaches suffer 
from several limitations. Researchers have compared 
performance of a number of candidate rules, but these 
are selected with little theoretical justification, often 
simply using rules previously mentioned in the literature. 
The apparent success of the RPS rule does not preclude 
the existence of a vast number of alternative rules that 
would perform equally well, or even better (Selten 
and Hammerstein 1984). Cognitive psychologists have 
considered a greater diversity of rules in their work on 
heuristics for decision making in humans (Gigerenzer 
et  al. 1999), but this research is only loosely based on 
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evolutionary considerations and typically uses arbitrary 
measures of performance. To give one example, Todd and 
Miller (1999) identified “adjust relative/2” as the best rule 
for learning during mate search, but this was based on 
the degree of assortative mating it produced, which is not 
necessarily something that would be optimized by selection. 
We feel this line of work would benefit from performance 
measures more closely tied to evolutionary fitness. What is 
critical is not how well a rule performs according to some 
subjectively chosen metric, but whether it will be favored by 
natural selection. Even in studies which have adopted an 
evolutionary approach, however, the parameter values for 
candidate rules are often chosen arbitrarily instead of being 
allowed to evolve (e.g. Beauchamp 2000), making it difficult 
to identify the best rule (Lea and Dow 1984; Hamblin 
and Giraldeau 2009). Moreover, few studies actually pit 
rules directly against each other, instead comparing their 
performance across separate simulations. Because evolution 
proceeds through direct competition between variants, a 
truly evolutionary simulation should reflect this.

FUTURE DIRECTIONS

We have criticized standard approaches to the study of 
behavior which consider the evolution of individual actions 
and highlighted the potential benefits of shifting our focus 
to the psychological mechanisms governing behavioral flex-
ibility. It is important that we now define a clear way for-
ward. To understand the evolution of learning rules, there 
are three key issues we need to address. First, we need to 
investigate the adaptive value of different possible rules 
from a theoretical point of view to predict which ones 
should evolve. Second, we need in-depth, empirical descrip-
tion of learning rules to identify how real animals learn in 
a range of different contexts. Third, we need to document 
individual variation in learning rules and measure the fit-
ness consequences of this variation. Below we outline a 
research programme for tackling these issues.

Which learning rules are favored by natural selection?

At a theoretical level, we recommend a more systematic 
approach to predicting which types of learning rules will 
be favored by natural selection. There are two key issues to 
consider when comparing the fitness of different rules. The 
first issue is that of evolutionary stability: does the wide-
spread adoption of a given rule in a population guarantee 
that alternative rules cannot invade? Historically, most studies 
have focused on this question (Harley 1984; Houston 1983; 
Maynard Smith 1984; Selten and Hammerstein 1984; Houston 
and Sumida 1987; Tracy and Seaman 1995). However, the sta-
bility criterion tells us nothing about whether evolution will 
lead the population to that equilibrium in the first place. A 
rule may be evolutionarily stable but not evolutionarily attrac-
tive, in which case a population that does not start by uni-
formly adopting that rule can never evolve to use it (Nowak 
1990). So, the key questions we need to ask are: is a learning 
rule evolutionarily stable, and is it an evolutionary attractor?

It is also important to evaluate these rules in a wider vari-
ety of circumstances than is currently done. It is natural 
that early work on learning rules placed emphasis on simple 
scenarios such as the ideal free distribution and the two-
armed bandit problem (Maynard Smith 1984). However, as 
Houston et al. (2007) have pointed out, to derive more real-
istic predictions, we will have to confront our models with 
additional complications such as environmental fluctuation 

and information about future rewards. To this, we would 
add that it is crucial that more models of learning rules 
take spatial processes into account (Valcu and Kempenaers 
2010). Illustrating this, work on the spatial structure of for-
agers playing a producer–scrounger game has shown that a 
simple, spatially explicit rule for behavior can lead to com-
plex behavioral patterns of the kind seen in laboratory stud-
ies of this game (Hamblin and Giraldeau unpublished).

With a view to testing hypotheses about the adaptiveness 
of learning rules, the aim should be to create models of ani-
mal behavior which drive empirical research. Although it is 
generally preferable to have mathematical models which can 
be solved analytically, adding crucial biological details can 
sometimes make analytical solutions intractable. We believe 
that other theoretical techniques have much to offer and 
therefore welcome the recent trend toward a heavier reli-
ance on numerical analysis and simulation. Alongside more 
well-established tools such as stochastic dynamic program-
ming (Houston and McNamara 1999), the use of genetic 
algorithms (Sumida et  al. 1990; Hamblin and Hurd 2007; 
Ruxton and Beauchamp 2008) and individual-based simula-
tions (DeAngelis and Mooij 2005) has great potential for 
modeling animal behavior through time and space. Genetic 
algorithms allow us to simulate the emergence and evolution-
ary dynamics of behavioral rules, revealing both their evo-
lutionary stability and evolutionary attractiveness. By pitting 
a large number of rules against each other, we can explore 
the resulting population dynamics, and by coupling genetic 
algorithms with individual-based simulations, we can imple-
ment more realistic depictions of learning behavior which 
are spatially explicit. Using this approach, future research can 
identify the key properties of successful learning rules across 
multiple contexts, as a guide to empirical investigation. The 
behavior those rules would produce in specific situations can 
then be compared directly with observed behavior in the field 
and laboratory.

How do real animals learn?

Thanks to many decades of research in experimental psychol-
ogy, we have a fairly good understanding of how animals learn 
in a foraging context. As we have seen, this has highlighted 
some intriguing cases in which animals appear not to behave 
adaptively, perhaps because they are confronted with artificial 
situations in the laboratory for which their evolutionary his-
tory has not prepared them (McNamara and Houston 1980; 
Houston and McNamara 1989; Houston et al. 2007; Houston 
2009; Pavlic and Passino 2010). Nonetheless, there exists a 
wealth of data on how animals sample available options, how 
they respond to positive reinforcement and punishment and 
how they remember past experiences. For contexts outside 
foraging, where rewards are not measured in terms of food, 
we know far less. There has been some work on learning in 
an aggressive context, mainly in terms of winner and loser 
effects (Hsu et al. 2006). In most study systems, loser effects 
seem to be more powerful than winner effects, but we lack a 
good explanation for why this bias exists. For other interac-
tive contexts, such as mating and cooperating, we know next 
to nothing about the ways in which animals learn. This is an 
unfortunate gap in our understanding, given that learning is 
likely to play a key role in the development of behavior in 
these domains too. Interestingly, one of the few clear experi-
mental tests of the iterated prisoner’s dilemma found that 
blue jays (Cyanocitta cristata) had difficulty learning to coop-
erate in this contrived laboratory situation, perhaps because 
of an impulsive tendency to choose short-term over larger 
long-term rewards (Clements and Stephens 1995; Stevens and 
Stephens 2004; but see St-Pierre et al. 2009).
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Likewise, learning rules like the RPS rule have been 
studied mainly in foraging situations, for example patch 
choice (Harley 1981), the multi-armed bandit (Harley 1981; 
Groβ et  al. 2008; Buchkremer and Reinhold 2010) and the 
producer–scrounger game (Beauchamp 2000; Hamblin 
and Giraldeau 2009). As illustrated by Harley (1981) these 
simple learning rules can easily be applied in other domains, 
suggesting that there may well be some very general principles 
of learning that are adaptive across a range of contexts. Just 
as a food reward acts as a positive reinforcer in a foraging 
context, it is straightforward to think of stimuli that might 
act as positive reinforcers in other contexts: defeating an 
opponent in an aggressive context, copulation in a mating 
context, shared success in a cooperative context. It could be 
that similar learning rules govern the way animals respond 
to all of these reinforcers, but currently we lack the data to 
answer this question. A research priority should be to study in 
detail how animals learn in non-foraging situations.

How do individuals differ in learning rules?

So far, our discussions concerning the mechanisms underly-
ing behavioral flexibility have assumed that these are com-
mon to all individuals of a given species, and perhaps even 
evolutionarily conserved across many species. This reflects 
standard approaches to studying animal behavior. In experi-
mental psychology, for example, research focuses on general 
principles of learning—processes such as habituation, sensi-
tization, and conditioning—and emphasizes species-typical 
patterns rather than individual differences (Barker and Katz 
2003). The widespread assumption is that the rules of asso-
ciative learning in one animal do not differ from those in 
another. Similarly, when it comes to theoretical studies on 
learning rules, the quest is often to find the optimal learning 
rule or the one that takes a population most quickly to an 
ESS, from which it cannot be displaced by any alternative rule 
(Harley 1981; Maynard Smith 1984). This assumes that one 
type of learning rule is the most adaptive and will exclude all 
others. However, there is good reason to believe this may not 
always be so.

In an evolutionary model of individual differences in 
responsiveness, Wolf et  al. (2008) found that responsiveness 
fails to spread to the whole population in a patch-choice situa-
tion. They considered a scenario in which members of a pop-
ulation disperse to two foraging patches that differ in quality. 
Unresponsive individuals choose patches randomly, whereas 
responsive individuals sample first and then choose to go to 
the patch which yields the highest pay-off. As responsive indi-
viduals spread, their success declines as a result of overcrowd-
ing at the initially better patch, until at some point they do 
no better than individuals that choose randomly. Assuming 
some cost of responsiveness (e.g. the time or energy invested 
in sampling), the result is an ES combination of responsive 
and unresponsive individuals.

More recently, variable versus fixed behavior was explored 
in the context of the producer–scrounger game (Dubois et al. 
2010). The standard version of this game considers only fixed 
phenotypes—that is, individuals are either pure producers 
or pure scroungers—and the predicted ESS in most cases 
is a stable mixture of producers and scroungers (Barnard 
and Sibly 1981; Giraldeau and Caraco 2000; Giraldeau and 
Dubois 2008). When foraging conditions change, favoring a 
different ratio of the two phenotypes, frequency-dependent 
selection moves the population toward the new ESS over sev-
eral generations. Dubois et  al. (2010) introduced a mutant 
which can directly sample the pay-off from producing and 
scrounging and flexibly adjust its use of these behaviors so 
as to maximize its pay-offs. This flexible mutant initially does 

better than the fixed producers and scroungers, so it begins 
to spread; but in doing so it changes the pay-offs obtained 
by the fixed phenotypes. Once it is sufficiently numerous in 
the population, its flexibility buffers the fixed phenotypes 
against selection caused by changes in foraging conditions. As 
a result, the flexible phenotype never spreads to fixation, and 
in fact it always remains in the minority regardless of the size 
of the population or the extent to which foraging conditions 
change (Dubois et al. 2010).

Both of these studies illustrate that the learning or flex-
ibility of some individuals will critically affect the pay-offs 
of flexibility in others. They make the intriguing prediction 
that populations of animals will consist of a mixture of types 
which differ in their responsiveness or learning ability: some 
individuals are malleable, whereas others are rigid in their 
behavior; some individuals are fast learners, whereas oth-
ers are slow. One could therefore imagine different learn-
ing rules coexisting within the same population as a stable 
polymorphism. Alternatively, perhaps conspecifics share the 
same basic learning rule but are polymorphic in its precise 
specifications (i.e. in the parameter values), for example by 
weighting past events differently or differing in their sensi-
tivity to reinforcement. Thus, differences in learning ability 
need not represent random, nonadaptive variation giving rise 
to “bright” and “dim” subjects; they might be actively main-
tained by frequency-dependent selection.

We propose that such differences in learning ability may 
underlie the variation in “personalities” documented in a 
growing number of species (Réale et  al. 2007). Learning is 
associated with a range of behavior patterns which show 
consistent between-individual variation, most notably explo-
ration. In great tits (Parus major), for example, bold individu-
als explore quickly but superficially and are slow to respond 
to changes in their environment, whereas shy individuals 
explore more thoroughly and are much more responsive to 
environmental change (Verbeek et  al. 1994). Such differ-
ences in responsiveness appear to be a key component of 
behavioral variation (Dingemanse et  al. 2010). But whereas 
the literature on animal personalities addresses individual 
differences in behavior, the approach we advocate empha-
sizes individual differences in the underlying learning rules. 
That is, individuals may differ in a variety of personality traits 
as a direct result of differences in how they learn. The pos-
sibility of polymorphic learning within populations may pro-
vide a much-needed framework for the study of individual 
differences in behavior. A key challenge for the future is to 
document the heritability and the fitness consequences of dif-
ferences in learning ability.

Concluding Remarks

Others before us (Houston 1987; Dukas 1998; Hutchinson 
and Gigerenzer 2005; McNamara and Houston 2009; Dukas 
and Ratcliffe 2009; Shettleworth 2010; Laland et al. 2011) have 
called for a greater integration of psychological and biological 
approaches to studying animal behavior. These calls have largely 
gone unheeded; lip service has been paid to the benefits of a 
more integrated approach, but rarely has this been embraced 
in practice. Rather than studying function and mechanism in 
parallel, we should be considering psychological mechanisms 
from an adaptive viewpoint, in an attempt to understand how 
they have evolved.

We are not suggesting that the behavioral gambit should 
be abandoned forthwith; rather, we are questioning its blind 
acceptance. Our concern is that most behavioral ecologists 
seem largely unaware that they are making an assumption 
that behavior is unconstrained by the psychological 
mechanisms governing flexibility. There appears to be a 
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widespread belief that the evolution of decision rules will 
generate the same solutions as the evolution of fixed actions, 
so that we need not worry about the details of those rules. 
Does the behavioral gambit stand up to empirical scrutiny? 
In many cases it may hold, although behavioral data show 
that sometimes it fails; animals do not behave optimally in 
all situations they encounter. But in any case, the point we 
wish to make is that the validity of the behavioral gambit is 
an empirical question, and it is important that we address it 
directly. We urge behavioral ecologists to turn their attention 
to the evolution of decision mechanisms, as multipurpose 
rules which are capable of providing effective solutions to a 
wide range of problems.
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